

A Reliability Benchmark for Big Data Systems on JointCloud
Yingying Zheng12, Lijie Xu1, Wei Wang12, Wei Zhou3, Ying Ding4

1Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences, 3KSYUN

4Institute of space optoelectronic technology, Changchun University of Science and Technology

Abstract—JointCloud provides a large-scale, flexible, and
elastic computing resource platform. Big data systems such as
MapReduce and Spark are widely deployed on this platform for
big data processing. How to choose a cloud platform in accord-
ance with the need of customers is a problem. Current perfor-
mance benchmarking suites can choose suitable cloud platforms
for customers. However, they do not consider the reliability of
applications running atop big data systems. These systems have
high scalability, but the applications running atop them often
generate runtime errors, such as out of memory errors, IO excep-
tions, and task timeouts. For users, they want to know whether
the developed applications have potential application faults. For
system designers and managers, they want to know whether the
deployed/updated systems have potential system faults. In addi-
tion, current benchmarks for big data system are also only de-
signed for performance testing. To fill this gap, we propose a
reliability benchmark, which contains representative applica-
tions, an abnormal data generator, and a configuration combina-
tion generator. Different from performance benchmarks, this
benchmark (1) generates abnormal test data according to the
application characteristics, and (2) reduces the configuration
combination space based on configuration features. Currently,
we implemented this benchmark on Spark system. In our prelim-
inary test, we found three types of errors (i.e., out of memory
error, timeout and wrong results) in five SQL, Machine Learn-
ing, and Graph applications.

I. INTRODUCTION

JointCloud, as a new generation of cloud computing plat-
form, provides joint cloud services and complex calculations.
Its pay-as-you-go computing model provides a scalable plat-
form for big data systems. Due to high scalability, big data sys-
tems such as MapReduce [1], Spark [2], and Flink [3] are
now widely deployed on cloud platforms for big data pro-
cessing. Because of the large number of cloud providers, there
is a problem that how to choose a cloud platform in accordance
with the need of customers. Previous studies [4, 5] provide
performance benchmarking suites to choose a suitable cloud
for customer. There is not a benchmark for choosing cloud for
reliability of applications. However, the applications deployed
on big data systems often suffer from runtime errors, such as
out of memory errors [6], IO exceptions [7], and task
timeouts [8]. These errors can directly lead to application
failures and cannot be tolerated by current fault-tolerant
mechanisms.

A big data application can be denoted as (input data,
configurations, user code). The input data is usually stored as
data blocks on distributed file system. Configurations include
system-specific configurations (e.g., input block size, parti-
tion number) and application-specific configurations (e.g.,

K-means application’s cluster k). User code refers to the
user-defined functions, such as map(), reduce(), and join(),
which process the input or intermediate data.

Previous empirical studies [6, 7, 9, 10] have summarized
the root causes of applications’ runtime errors: (1) application
faults, including improper configurations, abnormal data, and
user code defects. Improper configurations refer to large input
data block size, small partition number, unbalanced partition
function, etc. Abnormal data refers to exceptional input/inter-
mediate/output data, such as skewed data and high dimension
data. User code defects contain memory leak, high time/space
complexity, etc. (2) system faults, including hardware faults
and software faults. Hardware faults refer to CPU, memory,
network and disk failures. Software faults include logic-
specific bugs, data races, etc.

For users, they want to know whether the developed ap-
plications have potential application faults. For system de-
signers and managers, they want to know whether the de-
ployed/updated systems have potential system faults. Testing
is a promising approach, but current benchmarks [11, 12, 13,
17] for big data systems are designed for performance test-
ing. Since these benchmarks use normal input data and
fixed configurations, they cannot be directly used to de-
tect potential faults.

In this paper, we propose a reliability benchmark for
big data systems. To detect the potential application/system
faults, this benchmark generates abnormal input data, and
combines both system-specific and application-specific con-
figurations to test the applications. Different from perfor-
mance benchmarks, this benchmark (1) generates abnor-
mal input data according to the application characteristics,
and (2) reduces the configuration combination space based
on configuration features.

We implemented this benchmark on Spark system.
This benchmark currently contains 10 representative applica-
tions, an abnormal data generator, a configuration combi-
nation generator, and a test report generator. In our prelimi-
nary test, we found five errors: (1) out of memory error in a
SQL operation where a small table inner joins a large table
with skewed data; (2) wrong results in a SQL operation where
a table participates in multiple join operations but not re-
named; (3) out of memory error in RandomForest with high
dimension data; (4) out of memory and timeout errors in
LogisticRegression with high dimension, and abnormal distri-
bution data; (5) out of memory error in PageRank application
with large and sparse data.

In summary, our main contributions are as follows:

• A reliability benchmark is designed for big data sys-
tems, which generates abnormal test data according to
the application’s characteristics.

• A greedy configuration combination method is de-
signed to reduce the configuration combination space
through analyzing the configuration independence and
correlation.

• We found three types of errors (i.e., out of memory er-
ror, timeout, and wrong results) in five applications.

II. BENCHMARK DESIGN AND IMPLEMENTATION
The reliability benchmark mainly contains four parts, as

shown in Fig. 1:

1) Representative applications selection: It selects widely-
used SQL, Machine Learing, and Graph applications.

2) Abnormal input data generation: It summarizes
applications’ computational characteristics and generate
abnormal input data according to the characteristics.

3) Configuration combination test: It combines system-
/application-specific configurations and reduce the
combination space to test the applications.

4) Test report generation: It analyzes testing results and
reports the errors/faults .

A. Representative applications selection
We select the representative applications based on the fol-

lowing criteria: (1) the application represents a basic data oper-
ation or a widely-used algorithm; (2) the application has a
standard or well-tested implementation. At present, we selected
10 applications from previous benchmark [11, 12, 13, 17] or
Spark’s libraries such as Spark SQL, MLlib and GraphX li-
brary in Spark. Table I illustrates the type and computational
characteristics of each selected applications.

1) Scan: A data filter query like SELECT * FROM
TableA WHERE columnValue > x.

2) Aggregate: A data aggregation query like SELECT
columnA, sum (columnB) AS total FROM TableA GROUP
BY columnA ORDER BY total.

3) Join: A data join query like SELECT * FROM
TableA INNER JOIN TableB ON A.columnA =
B.columnA.

4) Mix: A query contains data filter, aggregation and join.
5) Logistic Regression: An iterative classification al-

gorithm used to predict continuous or classified data.
This algorithm uses a stochastic gradient-descent or L-

BFGS algorithm to train the classification model. The
model parameters are calculated, updated, and propagated
in each iteration.

6) K-means: an unsupervised clustering algorithm
which iteratively computes the K centers.

7) Decision Tree: a supervised classification algorithm
which builds a tree to classify the data.

8) Random Forest: Different from Decision Tree, it builds
multiple trees and combines them to classify the data. It uses
random sampling to train each tree.

9) PageRank: An algorithm used by Google Search to
rank websites in their search engine results.

10) Triangle Count: It counts the number of different
triangles in a directed or undirected graph.

TABLE I. REPRESENTATIVE APPLICATIONS

Type Application Computational Charac-
teristics

Abnormal Data
Characteristics

SQL
query

Scan Filter operation

LD, SKD
Aggregate Aggregated operation

Join Associated operation
Mix Filter,Aggregated and

Associated operation

Machine
Learning

Logistic
Regression

classification
algorithm, Iterative

computation LD, SD, HD,
AD K-means Clustering Algorithm,

Iterative calculation
Decision Tree Classification/Regressi

on, Breadth-first tree LD , HD, AD Random Forest Classification/Regressi
on, Breadth-first tree

Graph PageRank Iterative calculation LD, SD, AD TriangleCount Iterative calculation

B. Abnormal input data generation
 Based on the summarized computational characteristics,
this benchmark generates abnormal data for each application as
shown in Table I. Abnormal data characteristics include: large
data volume (LD), skewed data (SKD), sparse data (SD), high
dimension data (HD), and abnormal distribution data (AD).
How to select the abnormal data characteristics for different
types of applications is summarized below.

1) SQL Query: The Scan, Aggregate, Join applications
deal with key/value pairs. The computation complexity of the
filter, aggreated, and associated operations are related to the
key distribution, so this benchmark selects skewed data (i.e.,
generating uneven key distribution) as the abnormal input data.
Join application is also related to the order of the operations.

2) Machine Learning: Machine Learning applications
such as Logistic Regression and K-means take matrix-like
features as input data, so the related data characteristics are: (1)
matrix total size, (2) matrix dimension, (3) distribution of each
matrix column, and (4) matrix sparsity. Other tree-based
applications such as Decision Tree and Random Forest hold
breadth-first trees in memory and use random sampling to
train the trees. When the data dimension is high, the resource
utilization will be high too. In addition, the random sampling
method will affect the stability of the computing results.

Fig. 1. The modules of the reliability benchmark

3) Graph: PageRank and TriangleCount applications use
vertex-centric partition. In each interation, each vertex needs
to send its computation results to its adjacent vertices. So, the
computation complexity of these applications are related to the
edge distribution (i.e., the degree distribution of vertices). As a
result, this benchmark generates skewed graph (i.e., some
vertex has too many adjacent vertices) as the input data.
 Fig. 2 illustrates the process of generating abnormal input
data for the Random Forest application. The computation-
al characteristics of Random Forest application are breadth-
first tree and random sampling. Then, we select the corre-
sponding data features, namely large-scale, high-dimensional,
and abnormal distribution, to generate the abnormal input data.

C. Configuration combination test
After generating the input data, the next task is to combine

system-specific and application-specific configurations (e.g., as
shown in Table II) to test the applications.

TABLE II. CONFIGURATIONS OF THE RANDOMFOREST APPLICATION

Type Configuration Description

System-
specific con-
figurations

Input split
number Data parallelism

Partition num-
ber Task parallelism

Application-
specific con-
figurations

maxBins Maximum number of bins used for
splitting features

numClasses Number of classes for classification

numTrees Number of trees in the random
forest

maxDepth Maximum depth of the tree

 The main problem is that the configuration combination
space is too large. Suppose that an application has n configura-
tions, where the i-th configuration has mi optional values. So,
the combination space is O(m1*m2*···*mn). However, if the
configurations satisfy the following two assumptions, the com-
bination space can be reduced to O(n).

1. The configurations are independent of each other.
2. The mi values of configuration i are positively/negatively

correlated with the applications’ performance (e.g.,
execution time or resource usage).

 Based on the above two assumptions, the application’s per-
formance will become worst (may trigger runtime errors) when
the configurations take boundary values. Accordingly, we de-
signed a greedy algorithm (Algorithm 1) to combine the con-
figurations.

 For example in Fig. 3 a), the application has three configu-
rations. At first, this algorithm chooses the low boundary value
of each configuration (i.e., 2-1-1). Then it changes the first
configuration combination to be the high boundary value 100.
Now the configuration is 100-1-2. If the application’s resource
utilization of (2-1-1) is less than that of (100-1-2), the algo-
rithm will fix 100 as the first configuration. Next, the algorithm
repeats this selection on the other two configurations as shown
in Fig. 3 b), c) and d). Finally, the application may generate
runtime errors under the worst configuration combination (i.e.,
100-10-2) in Fig. 3 d).
 However, if the configurations do not satisfy the given two
assumptions, this benchmark uses binary search to select the
worst value in each configuration. The average computing
complexity is O(logm1*logm2*…*logmn).

Algorithm 1: Greedy configuration combination test

1. Give the range of each configuration.
2. Select a combination of each threshold value of each configuration, then

test, and record the resource occupancy.
3. Change the value of a configuration to another threshold, then test, and

record the resource occupancy.
4. Compare the resource usage in the last two combinations of configura-

tions, and preserve the critical value of poor performance.
5. Return to step 2, and repeat until the exception or ends of test. If an ex-

ception was found, the configuration was found which can cause fail-
ures. If no exception was found, the configuration with worst resource
usage or worst performance was found.

6. End of test.

D. Test report generation
After generating the abnormal data and running configura-

tion combination test, a task report generator is performed to
analyze the application’s runtime information and generate
test reports. The test reports mainly include: 1) what the
runtime error is, 2) what abnormal data causes the runtime
error, 3) what the worst configurations are.

Fig. 2. Generate abnormal data for the Random Forest application

Fig. 3. The process of reducing configuration combination space

TABLE III. PRELIMINARY TEST RESULTS

Application Input Data Configurations Errors
Join 10GB, skewed data Small table inner join big table OOM

Mix 10GB, skewed data A table participates in multiple join opera-
tions but not rename it Wrong results

RandomForest 1 million instances, 1000-dimensional, Gam-
ma-Poisson distribution

numTrees = 100, maxDepth = 30,
dimensions = 1000 OOM

LogisticRegression 1.05GB sparse data with 1000 dimensions 4 executor (2 cores, 8G), split=134.13MB,
partition number = 8

OOM,
Timeout

PageRank 10G data, 1 million vertices, 20 million edge 4 executor (2 cores, 8G),
convergence accuracy = 0.001 OOM

III. PRELIMINARY RESULTS

A. Experimental setup
We performed this reliability benchmark on a 10-node

cluster (including 1 master node and 9 slave nodes) using
Spark-2.0 on Ubuntu-11.04 Operation System. Each node has
4 CPU, 16GB RAM and 2*1TB Disks. We tested each appli-
cation 5 times and use the mean value.

For SQL applications, the input table schemas (shown in
Table IV) are as same as that used in Pavlo et al. [15]. How-
ever, the input data of all the applications are generated by
abnormal input data generator.

TABLE IV. TABLE SCHEMAS

Table name Column name Data type
Rankings pageURL VARCHAR

pageRank INT
avgDuration INT

UserVisits

sourceIP VARCHAR
destURL VARCHAR
visitDate DATE

adRevenue FLOAT
userAgent VARCHAR

countryCode VARCHAR
languageCode VARCHAR
searchWord VARCHAR

duration INT

B. Results

 The preliminary results are shown in Table III. We found
three types of errors (i.e., out of memory (OOM), timeout and
wrong results) in five applications.

C. Case studies
1) SQL join

 When testing the Join query in Spark SQL, this benchmark
generates both normal data and abnormal data (skewed data)
for each table shown in Table IV. Since the Join operation is a
binary operation, the join order can be changed. So, the join
query has two sub-queries as shown in Table V. BigSmallJoin
denotes Uservisits (large table) inner join Rankings (small ta-
ble), while SmallBigJoin denotes Rankings (small table) inner
join Uservisits (large table). Table IV shows the results of the
two Join operations.
 Out of memory error occurs in the second SmallBigJoin,
where a small table inner joins a large table with skewed data.
The execution time of the parallel tasks in BigSmallJoin and
SmallBigJoin applications are shown in Fig. 4.

 When a given data set is skewed, the number of processed
records on a certain task increases significantly. The reason is
that when the same key has too many values, these values will
be pushed to the same task in shuffle phase. In this situation,
the execution time of this task is far longer than that of the oth-
er tasks. By analyzing the inner join implementation in Spark,
we found that: when two tables inner join each other, the first
table is considered as a driven table, and the second table is
considered as a buffer table. It will traverse each record in the
drive table, look for the corresponding matching records in the
buffer table, and put records into the matching table. So when
we consider a large table as a buffer table, the matching records
will be huge. If there is a large table with a seriously skewed
data, the matching table will occupy much more memory, and
out of memory error will occur when we query the relevant key.

TABLE V. TEST RESULTS OF JOIN QUERY

SQL Type Data type Execution Time

BigSmallJoin
Normal data（large table) 51s

Skewed data（small table） 59s

SmallBigJoin
Normal data（small table） 56s
Skewed data（large table） Failed

1) Random Forest Application

The configurations of the Random Forest application are
shown in Table II. The generated abnormal data is 23.7GB
with 104 dimensions. The data distribution is Gaussian distri-
bution. The test results are shown in Table VI. Configurations
in group A are the initial values. Group B changes the config-
uration numTrees from 2 to 100. After that, the configuration
combination test found that the time and GC time increased
significantly. Therefore, the configuration combination algo-
rithm keeps the configuration numTrees to be 100 in group C.
The next test is to change maxDepth to be 100. Out of memory
error occurs in group C. If we continue testing using the con-
figurations in group D, out of memory error will also occur.
So, the worst configuration combination is 100-5-32-10. How-
ever, for the configurations in group C and D, the out of

Fig. 4. Comparison of normal and skew data

memory errors will disappear if the data distribution is
changed to the uniform distribution. It indicates that the appli-
cation has potential faults while processing the data with
Gaussian distribution.

TABLE VI. TEST RESULTS OF RANDOMFOREST

Configurations A B C D
numTrees 2 100 100 100
maxDepth 5 5 100 5
maxBins 5 5 5 32

Partition num 10 10 10 10
Running time 6.4min 41min OOM OOM

IV. RELATED WORK
The reliability of big data applications/systems has

emerged as a critical problem for both academia and industry.
Many researchers have performed empirical studies on big
data application/system failures. However, the current bench-
marks are not designed for reliability testing.

Failure study on big data applications/systems: Li et al.
[9] studied 250 failures in SCOPE jobs in Microsoft big data
platform, and found 84.5% failures are caused by defects in
data processing. They also found 3 OOM errors that are
caused by accumulating large data (e.g, all input rows) in
memory. Xu et al. [6] studied 123 OOM errors in real-world
Hadoop/Spark applications and found three causes of out of
memory errors: improper configurations, abnormal dataflow
and memory-consuming user code. Kavulya et al. [7] analyzed
4100 failed Hadoop jobs, and found 36% failures are array
indexing errors and 23% failures are IOExceptions. Zhou et al.
[16] studied the quality issues of big data platform in Mi-
crosoft. They found 36% issues are caused by system side
defects and 2 issues (1%) are memory issues. Gunawi et al.
[10] studied 3655 development and deployment issues in
cloud systems such as Hadoop MapReduce, HDFS, and
HBase. They found 87% issues are software faults, while 13%
issues are hardware faults. They also reported 1 OOM error in
HBase (users submit queries on large data sets) and 1 OOM
error in Hadoop File System (users create thousands of small
files in parallel). These studies help us design the abnormal
data generator and configuration generator.

Big data benchmarks: Pavlo [15] designed a big SQL
benchmark to compare the performance between MapReduce
and relational databases. Berkeley AMPLab developed a SQL
benchmark [12] to compare the performance among Spark,
Hive, Impala, etc. HiBench [13] is designed to test the perfor-
mance of Hadoop and Spark. BigDataBench [17] includes 14
real-world data sets, and 34 big data workloads. These bench-
marks use normal data and fixed configurations to test the
performance of big data systems.

V. CONCLUSION AND FUTURE WORK
Big data applications deployed on the cloud platform fre-

quently suffer from runtime errors. However, current bench-
marks are designed for performance testing and cannot be
directly used for detecting potential faults. In this paper, we
design a reliability benchmark for big data systems and im-
plement it on Spark. This benchmark first generates abnormal

input data according to the application characteristics, and
then uses greedy algorithm to combine system-/application-
specific configurations for testing. Preliminary results show
that this benchmark can detect application faults.

In the future, we will build more applications into the
benchmark and implement this benchmark on more systems
such as Flink.

VI. ACKNOWLEDGEMENTS
This work is supported by the National Key Research and

Development Program of China (2016YFB1000103) and
Youth Innovation Promotion Association, CAS (No. 2015088).

REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” in 6th Symposium on Operating System Design and
Implementation (OSDI), 2004, pp. 137–150.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
2012, pp. 15–28.

[3] “Apache Flink.” [Online]. Available: https://flink.apache.org/.
[4] A. Li, et al. "CloudCmp: comparing public cloud providers," in Pro-

ceedings of the 10th ACM SIGCOMM conference on Internet measure-
ment (SIGCOMM).,2010.

[5] Lenk, Alexander, et al. "What are you paying for? performance bench-
marking for infrastructure-as-a-service offerings." Cloud Computing
(CLOUD), 2011 IEEE International Conference on. IEEE, 2011.

[6] L. Xu, W. Dou, F. Zhu, C. Gao, J. Liu, H. Zhong, and J. Wei, “Experi-
ence report: A characteristic study on out of memory errors in distributed
data-parallel applications,” in 26th IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2015, pp. 518–529.

[7] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces
from a production mapreduce cluster,” in 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010.

[8] “Spark reduce operation taking too long.” [On- line].
Available: http://stackoverflow.com/questions/33558593/ spark-reduce-
operation-taking-too-long.

[9] S. Li, H. Zhou, H. Lin, T. Xiao, H. Lin, W. Lin, and T. Xie, “A charac-
teristic study on failures of production distributed data-parallel pro-
grams,” in 35th International Conference on Software Engineering
(ICSE), 2013, pp. 963–972.

[10] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria, “What bugs live in the cloud? A study of 3000+ issues in
cloud systems,” in Proceedings of the ACM Symposium on Cloud Com-
puting (SoCC), 2014, pp. 7:1– 7:14.

[11] “Spark Performance Tests.” [Online]. Available: https://github.com/
databricks/spark-perf.

[12] “Spark SQL Benchmark.” [Online]. Available: https://amplab.cs.
berkeley.edu/benchmark/.

[13] “HiBench: the bigdata micro benchmark suite.” [Online]. Available:
https://github.com/intel-hadoop/HiBench.

[14] M. Armbrust, et al. “Spark SQL: relational data processing in
spark,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2015.

[15] Pavlo, Andrew, et al. "A comparison of approaches to large-scale data
analysis." in Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), 2009.

[16] H. Zhou, J.-G. Lou, H. Zhang, H. Lin, H. Lin, and T. Qin, “An empirical
study on quality issues of production big data platform,” in ICSE, 2015.

[17] L. Wang, et al, “Bigdatabench: A big data benchmark suite from internet
services,” in HPCA, 2014.

