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Abstract—JointCloud provides a large-scale, flexible, and 
elastic computing resource platform. Big data systems such as 
MapReduce and Spark are widely deployed on this platform for 
big data processing. How to choose a cloud platform in accord-
ance with the need of customers is a problem. Current perfor-
mance benchmarking suites can choose suitable cloud platforms 
for customers. However, they do not consider the reliability of 
applications running atop big data systems. These systems have 
high scalability, but the applications running atop them often 
generate runtime errors, such as out of memory errors, IO excep-
tions, and task timeouts. For users, they want to know whether 
the developed applications have potential application faults. For 
system designers and managers, they want to know whether the 
deployed/updated systems have potential system faults. In addi-
tion, current benchmarks for big data system are also only de-
signed for performance testing. To fill this gap, we propose a 
reliability benchmark, which contains representative applica-
tions, an abnormal data generator, and a configuration combina-
tion generator. Different from performance benchmarks, this 
benchmark (1) generates abnormal test data according to the 
application characteristics, and (2) reduces the configuration 
combination space based on configuration features. Currently, 
we implemented this benchmark on Spark system. In our prelim-
inary test, we found three types of errors (i.e., out of memory 
error, timeout and wrong results) in five SQL, Machine Learn-
ing, and Graph applications.   

I. INTRODUCTION  

JointCloud, as a new generation of cloud computing plat-
form, provides joint cloud services and complex calculations. 
Its pay-as-you-go computing model provides a scalable plat-
form for big data systems. Due to high scalability, big data sys-
tems such as MapReduce [1], Spark [2], and Flink [3] are 
now widely deployed on cloud platforms for big data pro-
cessing. Because of the large number of cloud providers, there 
is a problem that how to choose a cloud platform in accordance 
with the need of customers. Previous studies [4, 5] provide 
performance benchmarking suites to choose a suitable cloud 
for customer. There is not a benchmark for choosing cloud for 
reliability of applications. However, the applications deployed 
on big data systems often suffer from runtime errors, such as 
out of memory errors [6], IO exceptions [7], and task 
timeouts [8]. These errors can directly lead to application 
failures and cannot be tolerated by current fault-tolerant 
mechanisms.  

A big data application can be denoted as (input data, 
configurations, user code). The input data is usually stored as 
data blocks on distributed file system. Configurations include 
system-specific configurations (e.g., input block size, parti-
tion number) and application-specific configurations (e.g., 

K-means application’s cluster k). User code refers to the 
user-defined functions, such as map(), reduce(), and join(), 
which process the input or intermediate data. 

Previous empirical studies [6, 7, 9, 10] have summarized 
the root causes of applications’ runtime errors: (1) application 
faults, including improper configurations, abnormal data, and 
user code defects. Improper configurations refer to large input 
data block size, small partition number, unbalanced partition 
function, etc. Abnormal data refers to exceptional input/inter- 
mediate/output data, such as skewed data and high dimension 
data. User code defects contain memory leak, high time/space 
complexity, etc. (2) system faults, including hardware faults 
and software faults. Hardware faults refer to CPU, memory, 
network and disk failures. Software faults include logic- 
specific bugs, data races, etc. 

For users, they want to know whether the developed ap-
plications have potential application faults. For system de-
signers and managers, they want to know whether the de-
ployed/updated systems have potential system faults. Testing 
is a promising approach, but current benchmarks [11, 12, 13, 
17] for big data systems are designed for performance test-
ing. Since these benchmarks use normal input data and 
fixed configurations, they cannot be directly used to de-
tect potential faults.  

In this paper, we propose a reliability benchmark for 
big data systems. To detect the potential application/system 
faults, this benchmark generates abnormal input data, and 
combines both system-specific and application-specific con-
figurations to test the applications. Different from perfor-
mance benchmarks, this benchmark (1) generates abnor-
mal input data according to the application characteristics, 
and (2) reduces the configuration combination space based 
on configuration features. 

We implemented this benchmark on Spark system. 
This benchmark currently contains 10 representative applica-
tions, an abnormal data generator, a configuration combi-
nation generator, and a test report generator. In our prelimi-
nary test, we found five errors: (1) out of memory error in a 
SQL operation where a small table inner joins a large table 
with skewed data; (2) wrong results in a SQL operation where 
a table participates in multiple join operations but not re-
named; (3) out of memory error in RandomForest with high 
dimension data; (4) out of memory and timeout errors in 
LogisticRegression with high dimension, and abnormal distri-
bution data; (5) out of memory error in PageRank application 
with large and sparse data.   

 



 

In summary, our main contributions are as follows: 

• A reliability benchmark is designed for big data sys-
tems, which generates abnormal test data according to 
the application’s characteristics. 

• A greedy configuration combination method is de-
signed to reduce the configuration combination space 
through analyzing the configuration independence and 
correlation. 

• We found three types of errors (i.e., out of memory er-
ror, timeout, and wrong results) in five applications. 

II. BENCHMARK DESIGN AND IMPLEMENTATION 
The reliability benchmark mainly contains four parts, as 

shown in Fig. 1:  

1) Representative applications selection: It selects widely-
used  SQL, Machine Learing, and Graph applications. 

2) Abnormal input data generation: It summarizes 
applications’  computational characteristics and generate 
abnormal input data according to the characteristics. 

3) Configuration combination test: It combines system-
/application-specific configurations and reduce the 
combination space to test the applications. 

4) Test report generation: It analyzes testing results and 
reports the errors/faults . 
 
 
 
 
 
 
 
 

A. Representative applications selection  
We select the representative applications based on the fol-

lowing criteria: (1) the application represents a basic data oper-
ation or a widely-used algorithm; (2) the application has a 
standard or well-tested implementation. At present, we selected 
10 applications from previous benchmark [11, 12, 13, 17] or 
Spark’s libraries such as Spark SQL, MLlib and GraphX li-
brary in Spark. Table I illustrates the type and computational 
characteristics of each selected applications. 

1) Scan: A data filter query like SELECT * FROM 
TableA WHERE columnValue > x. 

2) Aggregate: A data aggregation query like SELECT 
columnA, sum (columnB) AS total FROM TableA GROUP 
BY columnA ORDER BY total. 

3) Join: A data join query like SELECT * FROM 
TableA INNER JOIN TableB ON A.columnA = 
B.columnA. 

4) Mix: A query contains data filter, aggregation and join. 
5) Logistic Regression: An iterative classification al-

gorithm used to predict continuous or classified data. 
This algorithm uses a stochastic gradient-descent or L-

BFGS algorithm to train the classification model. The 
model parameters are calculated, updated, and propagated 
in each iteration. 

6) K-means: an unsupervised clustering algorithm 
which iteratively computes the K centers. 

7) Decision Tree: a supervised classification algorithm 
which builds a tree to classify the data. 

8) Random Forest: Different from Decision Tree, it builds 
multiple trees and combines them to classify the data. It uses 
random sampling to train each tree. 

9) PageRank: An algorithm used by Google Search to 
rank websites in their search engine results. 

10) Triangle Count: It counts the number of different 
triangles in a directed or undirected graph. 

TABLE I.  REPRESENTATIVE APPLICATIONS 

Type Application Computational Charac-
teristics 

Abnormal Data 
Characteristics 

SQL 
query 

Scan Filter operation 

LD, SKD 
Aggregate Aggregated operation 

Join Associated operation 
Mix Filter,Aggregated and 

Associated operation 

Machine 
Learning 

Logistic 
Regression 

classification 
algorithm, Iterative 

computation LD, SD, HD, 
AD K-means Clustering Algorithm, 

Iterative calculation 
Decision Tree Classification/Regressi

on, Breadth-first tree LD , HD, AD Random Forest Classification/Regressi
on, Breadth-first tree 

Graph PageRank Iterative calculation LD, SD, AD TriangleCount Iterative calculation 
 

B. Abnormal input data generation 
 Based on the summarized computational characteristics, 
this benchmark generates abnormal data for each application as 
shown in Table I. Abnormal data characteristics include: large 
data volume (LD), skewed data (SKD), sparse data (SD), high 
dimension data (HD), and abnormal distribution data (AD). 
How to select the abnormal data characteristics for different 
types of applications is summarized below. 

1) SQL Query: The Scan, Aggregate, Join applications 
deal with key/value pairs. The computation complexity of the 
filter, aggreated, and associated operations are related to the  
key distribution, so this benchmark selects skewed data (i.e., 
generating uneven key distribution) as the abnormal input data. 
Join application is also related to the order of the operations. 

2) Machine Learning: Machine Learning applications  
such as Logistic Regression and K-means take matrix-like 
features as input data, so the related data characteristics are: (1) 
matrix total size, (2) matrix dimension, (3) distribution of each 
matrix column, and (4) matrix sparsity. Other tree-based 
applications such as Decision Tree and Random Forest hold 
breadth-first trees in memory and use random sampling to 
train the trees. When the data dimension is high, the resource 
utilization will be high too. In addition, the random sampling 
method will affect the stability of the computing results. 

 
Fig. 1. The modules of the reliability benchmark  

 



 

3) Graph: PageRank and TriangleCount applications use 
vertex-centric partition. In each interation, each vertex needs 
to send its computation results to its adjacent vertices. So, the 
computation complexity of these applications are related to the 
edge distribution (i.e., the degree distribution of vertices). As a 
result, this benchmark generates skewed graph (i.e., some 
vertex has too many adjacent vertices) as the input data.  
 Fig. 2 illustrates the process of generating abnormal input 
data for the Random Forest application.  The computation-
al characteristics of Random Forest application are breadth-
first tree and random sampling. Then, we select the corre-
sponding data features, namely large-scale, high-dimensional, 
and abnormal distribution, to generate the abnormal input data.  

 

 

 

 

 

 

 

 

C. Configuration combination test 
After generating the input data, the next task is to combine 

system-specific and application-specific configurations (e.g., as 
shown in Table II) to test the applications.  

TABLE II.    CONFIGURATIONS OF THE RANDOMFOREST APPLICATION 

Type Configuration Description 

System-
specific con-
figurations 

Input split 
number Data parallelism 

Partition num-
ber Task parallelism 

Application-
specific con-
figurations 

maxBins Maximum number of bins used for 
splitting features 

numClasses Number of classes for classification 

numTrees Number of trees in the random 
forest 

maxDepth Maximum depth of the tree 

 The main problem is that the configuration combination 
space is too large. Suppose that an application has n configura-
tions, where the i-th configuration has mi optional values. So, 
the combination space is O(m1*m2*···*mn). However, if the 
configurations satisfy the following two assumptions, the com-
bination space can be reduced to O(n). 

1. The configurations are independent of each other.  
2. The mi values of configuration i are positively/negatively 

correlated with the applications’ performance (e.g., 
execution time or resource usage). 

 Based on the above two assumptions, the application’s per-
formance will become worst (may trigger runtime errors) when 
the configurations take boundary values. Accordingly, we de-
signed a greedy algorithm (Algorithm 1) to combine the con-
figurations. 

 For example in Fig. 3 a), the application has three configu-
rations. At first, this algorithm chooses the low boundary value 
of each configuration (i.e., 2-1-1). Then it changes the first 
configuration combination to be the high boundary value 100. 
Now the configuration is 100-1-2. If the application’s resource 
utilization of (2-1-1) is less than that of (100-1-2), the algo-
rithm will fix 100 as the first configuration. Next, the algorithm 
repeats this selection on the other two configurations as shown 
in Fig. 3 b), c) and d). Finally, the application may generate 
runtime errors under the worst configuration combination (i.e., 
100-10-2) in Fig. 3 d).  
 However, if the configurations do not satisfy the given two 
assumptions, this benchmark uses binary search to select the 
worst value in each configuration. The average computing 
complexity is O(logm1*logm2*…*logmn).  

Algorithm 1: Greedy configuration combination test 

1. Give the range of each configuration. 
2. Select a combination of each threshold value of each configuration, then 

test, and record the resource occupancy. 
3. Change the value of a configuration to another threshold, then test, and 

record the resource occupancy. 
4. Compare the resource usage in the last two combinations of configura-

tions, and preserve the critical value of poor performance. 
5. Return to step 2, and repeat until the exception or ends of test. If an ex-

ception was found, the configuration was found which can cause fail-
ures. If no exception was found, the configuration with worst resource 
usage or worst performance was found. 

6. End of test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D. Test report generation 
After generating the abnormal data and running configura-

tion combination test, a task report generator is performed to 
analyze the application’s runtime information and generate 
test reports. The test reports mainly include: 1) what the 
runtime error is, 2) what abnormal data causes the runtime 
error, 3) what the worst configurations are. 

 
Fig. 2. Generate abnormal data for the Random Forest application 

 

 
Fig. 3. The process of reducing configuration combination space 



 

TABLE III.  PRELIMINARY TEST RESULTS 

Application Input Data Configurations Errors 
Join 10GB, skewed data Small table inner join big table OOM 

Mix 10GB, skewed data A table participates in multiple join opera-
tions but not rename it Wrong results 

RandomForest 1 million instances, 1000-dimensional, Gam-
ma-Poisson distribution 

numTrees = 100, maxDepth = 30, 
dimensions = 1000 OOM 

LogisticRegression 1.05GB sparse data with 1000 dimensions 4 executor (2 cores, 8G), split=134.13MB, 
partition number = 8 

OOM, 
Timeout 

PageRank 10G data, 1 million vertices, 20 million edge  4 executor (2 cores, 8G), 
convergence accuracy = 0.001 OOM 

III. PRELIMINARY RESULTS 

A. Experimental setup 
We performed this reliability benchmark on a 10-node 

cluster (including 1 master node and 9 slave nodes) using 
Spark-2.0 on Ubuntu-11.04 Operation System. Each node has 
4 CPU, 16GB RAM and 2*1TB Disks. We tested each appli-
cation 5 times and use the mean value. 

For SQL applications, the input table schemas (shown in 
Table IV) are as same as that used in Pavlo et al. [15]. How-
ever, the input data of all the applications are generated by 
abnormal input data generator. 

TABLE IV.  TABLE SCHEMAS 

Table name Column name Data type 
Rankings pageURL  VARCHAR 

pageRank  INT 
avgDuration  INT  

UserVisits 

sourceIP  VARCHAR 
destURL  VARCHAR 
visitDate  DATE 

adRevenue  FLOAT 
userAgent VARCHAR 

countryCode  VARCHAR 
languageCode  VARCHAR 
searchWord  VARCHAR 

duration  INT  

B. Results  

 The preliminary results are shown in Table III. We found 
three types of errors (i.e., out of memory (OOM), timeout and 
wrong results) in five applications.  

C. Case studies 
1) SQL join 

 When testing the Join query in Spark SQL, this benchmark 
generates both normal data and abnormal data (skewed data) 
for each table shown in Table IV. Since the Join operation is a 
binary operation, the join order can be changed. So, the join 
query has two sub-queries as shown in Table V. BigSmallJoin 
denotes Uservisits (large table) inner join Rankings (small ta-
ble), while SmallBigJoin denotes Rankings (small table) inner 
join Uservisits (large table). Table IV shows the results of the 
two Join operations. 
 Out of memory error occurs in the second SmallBigJoin, 
where a small table inner joins a large table with skewed data. 
The execution time of the parallel tasks in BigSmallJoin and 
SmallBigJoin applications are shown in Fig. 4.   

  
 When a given data set is skewed, the number of processed 
records on a certain task increases significantly. The reason is 
that when the same key has too many values, these values will 
be pushed to the same task in shuffle phase. In this situation, 
the execution time of this task is far longer than that of the oth-
er tasks. By analyzing the inner join implementation in Spark, 
we found that: when two tables inner join each other, the first 
table is considered as a driven table, and the second table is 
considered as a buffer table. It will traverse each record in the 
drive table, look for the corresponding matching records in the 
buffer table, and put records into the matching table. So when 
we consider a large table as a buffer table, the matching records 
will be huge. If there is a large table with a seriously skewed 
data, the matching table will occupy much more memory, and 
out of memory error will occur when we query the relevant key. 

TABLE V.  TEST RESULTS OF JOIN QUERY 

SQL Type Data type Execution Time 

BigSmallJoin 
Normal data（large table) 51s 

Skewed data（small table） 59s 

SmallBigJoin 
Normal data（small table） 56s 
Skewed data（large table） Failed 

 

 

 

 

 

 
1) Random Forest Application 

The configurations of the Random Forest application are 
shown in Table II. The generated abnormal data is 23.7GB 
with 104 dimensions. The data distribution is Gaussian distri-
bution. The test results are shown in Table VI. Configurations 
in group A are the initial values. Group B changes the config-
uration numTrees from 2 to 100. After that, the configuration 
combination test found that the time and GC time increased 
significantly. Therefore, the configuration combination algo-
rithm keeps the configuration numTrees to be 100 in group C. 
The next test is to change maxDepth to be 100. Out of memory 
error occurs in group C. If we continue testing using the con-
figurations in group D, out of memory error will also occur. 
So, the worst configuration combination is 100-5-32-10. How-
ever, for the configurations in group C and D, the out of 

 
Fig. 4. Comparison of normal and skew data 



 

memory errors will disappear if the data distribution is 
changed to the uniform distribution. It indicates that the appli-
cation has potential faults while processing the data with 
Gaussian distribution. 

TABLE VI.  TEST RESULTS OF RANDOMFOREST 

Configurations  A B C D 
numTrees 2 100 100 100 
maxDepth 5 5 100 5 
maxBins 5 5 5 32 

Partition num 10 10 10 10 
Running time 6.4min 41min OOM OOM 

IV. RELATED WORK 
The reliability of big data applications/systems has 

emerged as a critical problem for both academia and industry. 
Many researchers have performed empirical studies on big 
data application/system failures. However, the current bench-
marks are not designed for reliability testing. 

Failure study on big data applications/systems: Li et al. 
[9] studied 250 failures in SCOPE jobs in Microsoft big data 
platform, and found 84.5% failures are caused by defects in 
data processing. They also found 3 OOM errors that are 
caused by accumulating large data (e.g, all input rows) in 
memory. Xu et al. [6] studied 123 OOM errors in real-world 
Hadoop/Spark applications and found three causes of out of 
memory errors: improper configurations, abnormal dataflow 
and memory-consuming user code. Kavulya et al. [7] analyzed 
4100 failed Hadoop jobs, and found 36% failures are array 
indexing errors and 23% failures are IOExceptions. Zhou et al. 
[16] studied the quality issues of big data platform in Mi-
crosoft. They found 36% issues are caused by system side 
defects and 2 issues (1%) are memory issues. Gunawi et al. 
[10] studied 3655 development and deployment issues in 
cloud systems such as Hadoop MapReduce, HDFS, and 
HBase. They found 87% issues are software faults, while 13% 
issues are hardware faults. They also reported 1 OOM error in 
HBase (users submit queries on large data sets) and 1 OOM 
error in Hadoop File System (users create thousands of small 
files in parallel). These studies help us design the abnormal 
data generator and configuration generator. 

Big data benchmarks: Pavlo [15] designed a big SQL 
benchmark to compare the performance between MapReduce 
and relational databases. Berkeley AMPLab developed a SQL 
benchmark [12] to compare the performance among Spark, 
Hive, Impala, etc. HiBench [13] is designed to test the perfor-
mance of Hadoop and Spark. BigDataBench [17] includes 14 
real-world data sets, and 34 big data workloads. These bench-
marks use normal data and fixed configurations to test the 
performance of big data systems. 

V. CONCLUSION AND FUTURE WORK 
Big data applications deployed on the cloud platform fre-

quently suffer from runtime errors. However, current bench-
marks are designed for performance testing and cannot be 
directly used for detecting potential faults. In this paper, we 
design a reliability benchmark for big data systems and im-
plement it on Spark. This benchmark first generates abnormal 

input data according to the application characteristics, and 
then uses greedy algorithm to combine system-/application-
specific configurations for testing. Preliminary results show 
that this benchmark can detect application faults. 

In the future, we will build more applications into the 
benchmark and implement this benchmark on more systems 
such as Flink.  
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