
Hug the Elephant: Migrating a Legacy Data
Analytics Application to Hadoop Ecosystem

Feng Zhu†∗, Jie Liu†¶, Sa Wang‡, Jiwei Xu†, Lijie Xu†, Jixin Ren§, Dan Ye†, Jun Wei†¶ and Tao Huang†¶
∗University of Chinese Academy of Sciences

¶State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
†Institute of Software, Chinese Academy of Sciences

‡Institute of Computing, Chinese Academy of Sciences
§Xin Yi Hua Medical Technology Company, Zhengzhou, Henan

{zhufeng10, ljie, xujiwei, xulijie09, yedan, wj, tao}@otcaix.iscas.ac.cn, renjixin@163.com, wangsa@ict.ac.cn

Abstract—Big data applications that rely on relational databas-
es gradually expose limitations on scalability and performance.
In recent years, Hadoop ecosystem has been widely adopted as
an evolving solution. This paper presents the migration of a
legacy data analytics application in a provincial data center. The
target platform follows "no one size fits all" method. Considering
different workloads, data storage is hybrid with distributed file
system (HDFS) and distributed NoSQL database.

Beyond the architecture re-design, we focus on the problem of
data model transformation from relational database to NoSQL
database. We propose a query-aware approach to free developers
from tedious manual work. The approach generates query-
specific views (NoView) for NoSQL and re-structures the views
to align with NoSQL’s data model. Our results show that the
migrated application achieves high scalability and high perfor-
mance. We believe that our practice provides valuable insights
(such as NoSQL data modeling methodology), and the techniques
can be easily applied to other similar migrations.

Keywords—Hadoop, Migration, Data Model, NoSQL Database

I. INTRODUCTION

In the big data era, a large number of organizations are con-
fronted with challenges on software evolution, which is typi-
cally driven by the ever-increasing data size. Particularly, for
data-intensive applications, the 5V (volume, velocity, variety,
veracity, and value) [1] characteristics promote the demands on
excellent storage and processing capabilities beyond traditional
architectures. A common and evolving strategy is to migrate
the application to more modern platforms. As the de facto stan-
dard for big data techniques, Hadoop1 ecosystem has become
the very choice in a variety of scenarios. Consequently, many
enterprises migrate their legacy applications (e.g., [5], [6], [7],
[8] and etc.) to Hadoop ecosystem for scalability, performance
and flexibility through clusters of commodity hardware.

Our research centers on big data analytics applications,
which are generally built to collect, store, process and query
data. While modern companies take their data as a valuable
asset, big data analytics for mining this asset in particular
has been regarded as the key discipline in the last decade
[37]. Hence, it is common in various domains (e.g., social
network, healthcare, online shopping and etc.) to uncover the

1Apache Hadoop. http://hadoop.apache.org

hidden patterns and get statistical information for business
intelligence, government policy support and so on.

However, migrating to Hadoop ecosystem is a non-trivial
task for developers. Challenges for conducting such a migra-
tion project are manifold. To begin with, traditional solutions
based on relational database or data warehouse are so-called
"one size fits all" [9], [32]. Nevertheless, the major trend in
big data is the understanding that there is "no one size fits
all" solution [9], [10], [11], [12]. In relational databases, data
storage and query processing are tightly-coupled as a whole.
When migrating to Hadoop ecosystem, these functionalities
need to be provided by different decoupled frameworks, like
HDFS, NoSQL [4], MapReduce [3], and so on. The wide
diversification of features and interfaces requires much effort
to make them work together well. Second, architecture evolu-
tion brings challenges in data migration process. Prominently,
data model layer will correspondingly see an up-to-down shift
between the source and target platform, varying from data
modeling methodology to physical storage structure, resulting
to the difficulties in the transformation process. However, there
is no general guideline to assist developers.

The objective of this paper is to demonstrate the methods,
approaches and techniques to address the above challenges
in the context of data analytics applications. We carry out a
detailed case-study to (1) adapt a repeatedly-used migration
process model, (2) re-design the architecture based on Hadoop
ecosystem, and (3) present an automatic query-aware approach
for the data model transformation problem, which is embodied
in data migration. The contributions of this paper can be
summarized as follows.
• The successful case provides feasible guidelines in architec-

ture and dataflow design for similar migrations to Hadoop
environment, which is a trend in the big data era.

• We focus on the problem of data model transformation
(from relational database to NoSQL database). To the best
of our knowledge, this is the first paper with an available
automatic approach to address the problem in the context
of data analytics applications.

• Techniques and patterns proposed in our work are general
and application-independent. We conduct an in-depth study
to give insights and reveal the generality.

2016 IEEE International Conference on Software Maintenance and Evolution

978-1-5090-3806-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSME.2016.14

177

Query

Result

Stored
Procedure

Data Servermetadata

EMR -
PACS

Materialized
View

Backup ServerFileSystem

ETL

HIS
Basic Table

Application
Server

t
Data

 Analysis

Data
Source

Fig. 1. The Initial Architecture of HEALTH Application

The rest of this paper is organized as follows. Section II
describes the application we studied in this paper. In section
III, we present the migration process and the new architecture
based on Hadoop ecosystem. Section IV elaborates on the
problem of data model transformation. In section V, we
evaluate the migration and share lessons learned. Related work
is given in section VI. Section VII makes the discussion on
generality and threats to validity. We conclude this paper and
our future work in section VIII.

II. BACKGROUND: THE APPLICATION

Data analytics applications are common and significant in
many organizations. Since the summer of 2013, we have
been engaged in such an application for healthcare in Henan
province (China), called HEALTH2, which technically sup-
ports the national "new village cooperative health insurance"
project. HEALTH was first developed in 2009 to provide
insights in medical data, including structured data (relational
tables), semi-structured data (medical documents) and unstruc-
tured data (medical images, videos).

Fig. 1 depicts the architecture of HEALTH. The central
data server combines data residing in disparate sources. In
current stage, structured relational data analysis is the main
task. Medical documents, images and videos are stored in
filesystem with their metadata (i.e., path, keyword, and etc.)
maintained in database. The data center creates basic tables
the same as that in data sources. New records for the ba-
sic tables are loaded periodically by an open-source ETL
(Extraction-Transformation-Load) tool Kettle3. Then, Kettle
calls the designed stored procedures to incrementally update
the pre-defined materialized views [14]. HEALTH provides
services as parametric queries. In the query time, users input
particular parameters through the presentation layer (such as
web textarea, drop-down list, etc.) to get result by performing
SQL queries on basic tables and materialized views.

Workload Types. HEALTH does not have data updates or
deletions. The read-only workloads can be divided into two
types: interactive query and batch-oriented reporting query
[15]. It should be noted that, there is no strict boundary
between these two types in technical side. In HEALTH, the
classification is marked clearly according to different scenar-
ios, which can be recognized as below.
• Interactive Query. Interactive queries need to guarantee

response time to meet users’ online waiting for the results,

2HEALTH in Henan Province. http://www.hnhzyl.com
3Kettle ETL Tool. http://kettle.pentaho.org

and cost from milliseconds to several minutes. The queries
are generally simple without not too many sub-queries.

• Batch-oriented Reporting Query. Reporting queries deliver
off-line business reports as results to users with compre-
hensive analysis in a batch way, and cost tens minutes or
even up to hours. The queries are complex with substantial
sub-queries, aggregation and join operations.
This initial architecture has worked well for nearly four

years. With the ever-increasing data size, the architecture
gradually exposes limitations. (1) The first and most obvious
one is the difficulty for scaling out. Until 2013, HEALTH
had covered more than 150 counties, with 26TB accumulated
data and 28GB newly powered data every day. Relying on
relational database server is difficult to achieve the scalability.
(2) The other drawback is the performance bottleneck. The
maintenance time between basic tables and materialized views
keeps increasing and some queries even take up to ten hours.
Though techniques like table partition can be made to alleviate
the pressure, data accumulation leads to the optimization
endless. (3) Moreover, considerations should anticipate the
future demands. HEALTH has now started the plan on big data
mining and machine learning (e.g., the disease prediction).
To conclude, we need an evolving architecture that not only
meets the current requirements, but also anticipates the future
extensions. Motivated by the facts above, we decided to
migrate the HEALTH application to Hadoop ecosystem.

III. MIGRATION PROCESS AND ARCHITECTURE DESIGN

A. Preliminary: Hadoop Ecosystem

Hadoop is the open source implementation of Google’s dis-
tributed file system GFS [2] and parallel computing framework
MapReduce [3]. Since it emerged in the early 2000s, a rich
ecosystem has been developed and gained its popularity. Until
now, the new Hadoop 2.0 ecosystem has included various
components, such as Apache Spark4, Hadoop’s distributed file
system (HDFS), NoSQL [4] databases and so on. Besides the
basic components of HDFS and MapReduce in Hadoop, the
new architecture of HEALTH is based on three well-known
frameworks: Hive5, HBase6 and Sqoop7.

Hive [16] is the data warehouse solution beyond Hadoop.
It stores data as relational tables in Hadoop’s distributed
filesystem (HDFS) and provides a SQL dialect (HiveQL) to
express queries on tables. A Hive query will be converted to
a sequence of MapReduce jobs.

HBase is the distributed NoSQL database built on the top of
HDFS, modeling on Google’s BigTable [17]. HBase not only
supports random, real-time data read and write access, but also
can take advantage of MapReduce for batch-processing tasks.

Sqoop is a ETL tool designed to transfer data between
Hadoop and relational databases. The dataset being transferred
is sliced up into different partitions and a MapReduce job is

4Apache Spark. http://spark.apache.org
5Apache Hive. http://hive.apache.org
6Apache HBase. http://hbase.apache.org
7Apache Sqoop. http://sqoop.apache.org

178

Initialization Development

Testing Cut-
over

Strategy and
Pre-analysis

Platform Setup
(Architecture Design)

Data uploading,
analysis, cleansing

Data Transformation
(SQL-to-NoSQL)

Fig. 2. Four-step Data Migration Process Model

launched with individual mappers responsible for transferring
a slice of the dataset.

B. Migration Process Model
The migration of HEALTH revolves around data. However,

any unplanned movement in shape of unprofessional data
migration leads to high risk. A stringent and stepwise approach
is critical. In our work, we adapted a mature practice-based
data migration process model [18], shown in Fig. 2. The
process model consists of four main stages, which in turn
contain distinct phases. The main stages are: initialization,
development, testing and cut-over.

Initialization. Initialization is the preparing stage before
starting the migration. The project organization and technical
infrastructure for HEALTH are established. The stage contains
phases for strategy and pre-analysis (e.g., scope, roadmap,
risks estimation and etc.), and the platform setup.

In Fig. 2, we highlight the architecture re-design, which is
the key problem in platform setup phase. As aforementioned,
the target platform based on Hadoop ecosystem follows a "no
one size fits all" method. Considering the different query types,
the new architecture will adopt a hybrid storage to combine
the benefits of different storages. For batch-oriented reporting
queries, data is kept in HDFS and managed by Hive. The
batch-oriented Hive (on HDFS) is appropriate for reporting
queries that involve intensive whole table scans to produce
reports. To support interactive queries, some specific data is
generated to be re-structured in HBase.

Development. The development stage covers all aspects for
implementing the migration program. It is vital to learn as
much as possible about the data and its structure of both source
and target platform. As a matter of fact, the development stage
consists of two distinct phases on data uploading, analysis,
cleansing, and data transformation. In Fig. 2, we highlight
the data transformation phase, which is performed as an
incremental and iterative manner.

Incremental and iterative manner. To mitigate data migra-
tion risks, the whole data transformation process is incremental
and iterative. (i) The first step is straightforward with one-to-
one mapping for all queries: one relational basic table to one
Hive basic table, one materialized view to one intermediate
table (as no concept for "materialized view" in Hive), and one
SQL query to one Hive SQL query. (ii) Then for interactive
queries, we will consider how to implement the data storage
and data access patterns in HBase.

SQL-to-NoSQL. The data stored in HBase raises the problem
of data model transformation from relational database to
NoSQL database (i.e., SQL-to-NoSQL). The unique character-
istics (i.e., data modeling methodology and flexible structure)
of NoSQL make the problem challenging and difficult. On one

HDFS

metadata
Controller

Query

Result

ETL

Hive
Basic
Table

HBase

NoViewSqoop

(SQL/API)Data Modeling (IK)

Intermediate
Table

{ }{{PACS

HIS

Data
Source

EMR -

Application
Server

Data

 Analysis

Fig. 3. The Architecture of HEALTH based on Hadoop Ecosystem

hand, the schema-less design of NoSQL indicates numerous
mapping schemes. On the other hand, relational database
is optimized with sophisticated mechanisms like index and
cost-based query engine. When migrating to NoSQL, these
features cannot be inherently supported but their advantages
for performance need to be achieved. Nevertheless, there is no
general guideline to assist developers until now.

To handle the problem, we propose an automatic query-
aware approach. Given a query and relational tables, our
approach accomplishes the transformation by two phases: (1)
generates the query-specific view for NoSQL by analyzing
query’s abstract syntax tree (AST), and then (2) reorganizes
the attributes to conform NoSQL storage according to the
query and indexes created. The first phase is in fact the reverse
engineering on legacy relational solution. For presentation
convenience, we denote the generated views as NoView. The
second phase is the process of NoSQL data modeling for
NoView (i.e., "NoSQL View"). We concentrate on the design
for row-key of NoSQL’s flexible data model to facilitate data
access. We call the design as IK (short for "intelligent key").

Testing & Cut-Over. The testing stage validates migration
effects on correctness, performance, scalability and so on. In
this stage of our migration, solutions of relational database
and Hadoop ecosystem are co-existed. In the end, the cut-over
stage switches the application to the Hadoop ecosystem.

C. Architecture Redesign
Fig. 3 demonstrates the new architecture based on Hadoop

ecosystem. In distributed environment, Hadoop cluster and
HBase cluster share the same master node, on which both
Sqoop and Hive are installed. The controller is a lightweight
coordinator we implemented to schedule different frameworks
to work together in order (the initial choice is Oozie8, but we
found it is too complicated). The controller runs as a non-stop
service in the master node. It encapsulates a set of scripts
that manage the lifecycles (i.e., the startup and shutdown) of
different frameworks. The scheduling logic can be described
from three stages in terms of dataflow: data source (importing
data), data storage and query processing.

Data Source. For newly produced medical documents,
images and videos, we use a MapReduce program to fetch
them. For relational tables, Sqoop takes Kettle’s place to
import new records from data sources in parallel. As that
in initial architecture, data importing job is scheduled by the
controller in midnight every day.

8Apache Oozie Workflow Scheduler for Hadoop. http://oozie.apache.org

179

Data Storage. The semi-structured data and unstructured
data are stored in HDFS and their metadata is managed in
HBase. For structured data, the new architecture adopts a
hybrid storage solution to combine the batch-processing char-
acter of Hive (on HDFS) and the real-time data access feature
owned by HBase. The long running queries are performed
on basic tables and intermediate tables (corresponding to the
materialized views in relational database) in Hive, while the
interactive queries are executed on NoView in HBase.

New records from different data sources will be imported
directly to the basic tables in Hive (on HDFS). These tables
are defined as the partitioned table in Hive, therefore the
incremental data imported everyday will be automatically
appended as a new partition table tagged by date time. Then,
the controller starts the designed HiveQL (corresponding to
the stored procedure in relational database) to incrementally
update the intermediate tables and NoView.

Query Processing. Query processing in HEALTH includes
two sides. One is the consistency maintenance between basic
tables and derived data (i.e., the intermediate tables and
NoView). The new architecture employs HiveQL (translating
to MapReduce) to accomplish the task in a batch way. The
other side is the query services provided to users. For batch-
oriented long running queries, data access pattern is expressed
as HiveQL. For interactive queries, data access pattern may be
HBase API or the hybrid of it with MapReduce.

IV. DATA MODEL TRANSFORMATION

Data model transformation indicates the method shift from
one to another one. In this section, we devote special attentions
to the SQL-to-NoSQL problem.

Target Data Model. HBase is one kind of extensible records
NoSQL store. The most basic unit of HBase is a column.
One or more columns form a row that is addressed uniquely
by a row key. A number of rows form a table. All rows are
always sorted ascend-lexicographically. Rows are composed of
columns and group them into column families. Column family
builds topical boundaries between the data. Columns are often
referenced as family:qualifier. HBase mainly provides three
data access interfaces: Get, Put and Scan. The Get and Put
interfaces are specific to particular rows and need the row key
to be provided. The Scan operation is performed over a range
of rows defined by a start and stop row key.

A. Running Example and Approach Overview
Fig. 4 shows the running example. Two tables (os_pres_01

and os_pres_02) record information of prescriptions while the
gr_pyc_code table represents the information of physicians.
The drug_gr_info is the table with drug attributes. PT and
PN are two interactive queries. The PN query is to "figure
out the top k physicians who use penicillin in his prescription
during a specific time period", while the PT query is to "find
out the most recent k physicians who use penicillin". The
drug_name and pres_time are parameters reserved for users’
query-time inputs. The strategy for materialized view is to join
os_pres_01 and os_pres_02 on the field pres_id to get os_pres.

For performance improvement, the two columns (drug_name
and pres_time) are indexed.

Fig. 5 depicts the overview of whole data model transforma-
tion process. The left part is the solution with Hive (on HDFS),
and the right part is the solution based on hybrid storage. It
can be seen that the materialized view has been re-designed
as NoView. The entire process consists of two fundamental
components: NoView and IK.

Before transformation. The solution based on Hive (on
HDFS) leads to poor performance for interactive queries. (1)
Hive translates queries into a sequence of MapReduce job,
which is time-consuming with batch-oriented character. (2)
The indexes created in relational database are dropped and
consequently query processing will incur the scan on whole
table. To fill the gap, we use HBase as a complementary
storage to support the interactive queries.

Transformation approach: query-aware. The core
method of query-aware approach is to store the reverse en-
gineered NoView with fine-grained key-value based modeling
according to the query and indexes. The Noview can be treated
as a special view that is generated from basic tables with
HiveQL. The fundamental purposes of these two components
are the answers to the questions on "what data should be stored
in NoSQL" and "how to store the data".

After transformation. The right part in Fig. 5 shows
the data model and data access pattern after transforma-
tion. Our approach generates the NoView with four attributes
{drug_name, pres_time, pyc_name, drug_number}. The row
key is the composition of drug_name and f(pres_time), de-
limited by the char "+", in which the function f(dateTime)
reverses the timestamp’s lexicographical order. For example,
the timestamp string "2012-01-01" will be encoded as "7987-
98-98", subtracting from 9 for each number. Each row contains
a column pyc_name with the cell of pyc_number. The rewritten
PT query scans table with start row key "penicillin+", until
getting 5 unique users. The rewritten PN query will calculate
the top 10 physicians during the range scan between start row
key "A+f(endTime)" and end row key "A+f(startTime)".

B. NoView: Query-specific View for NoSQL
NoView, short for "NoSQL View", is a special view, which

contains the minimum query-specific attributes. There may be
numerous strategies to generate some specific data beyond
basic tables to support an interactive query. For NoSQL data
modeling methodology, NoView adopts an extreme way to
get optimal query performance. For the running example,
only the attributes of {pyc_name, drug_name, drug_number,
pres_time} are necessary to the PT query and PN query.

Reasons for NoView. To begin with, we define a query is
easy-implementable to NoSQL if it contains no sub-queries or
join operations in the context of this paper. We take NoView
based on the following reasons. (1) For other strategies,
if the transformed query on generated data is not easy-
implementable, they will be difficult to support interactive
queries, because the join operations lead to intensive data
shuffling in NoSQL’s distributed environment and the logic

180

DRUG_GR_INFO

DRUG_ID
DRUG_CODE
DRUG_NAME
DRUG_CATEGORY

OS_PRES_01

PRES_ID
P_ID
PRES_TIME
DEP_CODE
PYC_CODE

OS_PRES_02

PRES_ID
DRUG_ID
DRUG_NUMBER
DRUG_PRICE

GR_PYC_CODE

PYC_CODE
DEP_CODE
PYC_NAME
PYC_LEVEL
PYC_PRES_LEVEL

OS_PRES_01

OS_PRES_02

DRUG_GR_INFO

GR_PYC_CODE

OS_PRESJoin

PN
SELECT TOP 10
 PYC_NAME, SUM(DRUG_NUMBER) AS ‘TOTAL’
FROM GR_PYC_CODE JOIN OS_PRES
ON OS_PRES.PYC_CODE=GR_PYC_CODE.PYC_CODE
JOIN DRUG_GR_INFO
ON OS_PRES.DRUG_ID=DRUG_GR_INFO.DRUG_ID
WHERE DRUG_NAME=‘penicillin’
AND PRES_TIME >=‘2012-01-01’ AND PRES_TIME <‘2012-01-08’
ORDER BY TOTAL DESC

PN: Finding out the top 10 physicians who use
penicillin in this week.
PT: Finding out the most recent 5 physicians
who use penicillin.

PT
SELECT TOP 5 PYC_NAME, PRES_TIME
FROM GR_PYC_CODE JOIN OS_PRES
ON OS_PRES.PYC_CODE=GR_PYC_CODE.PYC_CODE
JOIN DRUG_GR_INFO
ON OS_PRES.DRUG_ID=DRUG_GR_INFO.DRUG_ID
WHERE DRUG_NAME=‘penicillin’
ORDER BY PRES_TIME DESC

Query

Fig. 4. Running Example for Data Model Transformation

HDFS {pyc_name,
drug_name,
drug_number
pres_time}

Query-aware ApproachHive Solution: one-to-one

drug_name+f(pres_time)

penicillin +7989-87-97
penicillin +7989-88-88

pyc_name:drug_number

Ada:2
Kate:1

Basic tables

Intermediate table
OS_PRES

PT(HiveQL) PN(HiveQL)

HDFS Basic tables

PT: SCAN(“penicillin”, x)
PN: SCAN(“penicillin ”, f(endTime), f(startTime), x)

NoView IK

AST

Query
Index

Predicates

HiveQL

Fig. 5. Data Model Transformation Overview

of sub-queries is complex to be implemented with low-level
NoSQL APIs. Hence, they generally have the similar com-
puting costs as that of Noview. (2) NoView provides a most
possible way with maximum pre-computation. If it cannot
simplify the initial query to an easy-implementable query,
other strategies will fail too. (3) Most importantly, NoView
generation and maintenance are accomplished by MapReduce
(translated by Hive) in a batch way. Due to its scalability, the
time cost can be ensured within certain time span by adding
servers. This is the main difference with traditional single
relational database, which requires the tradeoff between two
sides (i.e., data maintenance and the query side).

TABLE I
OPERATOR AND QUERY NOTATIONS

Selection: σS (R) R is the relation table and S is the column
set

Projection: πP (R) R is the relation table and P is the column
set

Join: R1 ◃▹J R2 R1 and R2 are relation tables and J is the
column set

Aggregation: AGF (R) R is the relation table, A is the column set
in group-by clause and F is the column set
in aggregation

Order By: OC(a/d)(R) R is the relation table, C is the column set
and a/d represents ascending/descending

Top: TK(R) R is the relation table and K is top number

NoView Generation. NoView is generated by pushing up the
parameters with the re-arrangement of query operators. With-
out the loss of generality, we study the queries with frequent
operators: selection, projection, join, aggregation, sort and
limit. Based on the notations, the PT query can be expressed

as: PT = TxOC(d)(πP (R1 ◃▹J1
(σS (R2 ◃▹J2

R3)))), in
which P = {pyc_name, pres_time}, S = {drug_name},
J1 = {pyc_code}, J2 = {drug_id}, R1 = gr_pyc_code,
R2 = os_pres, R3 = drug_gr_info and C = {pres_time}.

Considering a parameter in where expression followed by
two operators, X and Y , i.e., X Y (σS (R)). (1) When Y
is selection, projection, join or sort, the parameter can be
extracted with X Y (σS (R)) = X (σSY (R)). Furthermore,
any valid PSJ-expression can be transformed into a standard
form consisting of cartesian product, followed by a selection,
followed by a projection [19]. (2) When Y is the aggregation
operator (i.e., X (AGF (σS (R)))) and X is a selection, pro-
jection or sort operator, the expression can be converted into
X (AGF (σS (R))) =A GF (X (σS (R))). When X is a join
operator, column sets J , A, F and R in aggregation have rela-
tions as A∩F = ∅, A∩(R−A−F) = ∅, F∩(R−A−F) = ∅. If
S ⊆ A, aggregation can be computed before the selection, i.e.,
AGF (σS (R)) = σS (AGF (R)), so the parameters can still be e-
qually extracted with X (AGF (σS (R))) = σS (X (AGF (R))).
Otherwise, the aggregation cannot be pre-computed. In this
case, to accomplish the X operator first can be tried. As for
the join operator, if S ̸⊆ A and J ∩ F = ∅, then the joining
of columns will not change after aggregation and the join
operator can be pre-computed. Therefore, the below equation
can be get R1 ◃▹J (AGF (σS (R))) =A GF (σS (R1 ◃▹J R)).
If S ̸⊆ A and J ∩ F ̸= ∅, neither join operator can
be put inside nor the parameters can be put outside of
the aggregation operator. (3) When the parameters cannot
be pulled out from Y . The generation will be stopped.
Therefore, with combing the query that joins os_pres_01 and

181

QUERY

JOIN TOP

OS_PRES
DRUG_GR_INFO GR_PYC_CODE

JOIN

OS_PRES_02 OS_PRES_01

drug_name pres_time pyc_name

QUERY

JOIN

TOP

OS_PRES

DRUG_GR_INFO GR_PYC_CODE

JOIN
OS_PRES_02 OS_PRES_01

drug_name

pres_time

pyc_name

NoView
pres_time pyc_namedrug_nameNoView

Generation

Fig. 6. NoView Generation for the PT Query

os_pres_02 for table os_pres, the PT query can be transformed
as PT = TxOC(d)σS (NoV iew) = TxOC(d)σS (πP1

(R1 ◃▹J1

((πP2
(R4)) ◃▹J3

(πP3
(R5))) ◃▹J2

R3)), in which,
P1 = {pyc_name, pres_time, drug_name}, P2 =
{pres_id, pyc_code, pres_time}, P3 = {pres_id, drug_id},
R4 = os_pres_01, J3 = {pres_id}, R5 = os_pres_02.

The algorithm works at the abstract syntax tree (AST) of a
parametric query with a bottom-up and depth-first behavior.
When coming across the parameters in where clause in an
expression composed with selection, projection, join and sort
operators, it pushes them up to the upper layer and keeps the
parameters in select clause. Fig. 6 shows the process with PT
query. When coming across the expression with aggregation
operator, the join operator in upper layer will be pushed down
to be computed first. When coming across the aggregation
operator and the parameters cannot be pushed up, the join
expressions will be pulled in. When the operator is the limit
or reaching the top layer, the algorithm will end the search, and
return the root node of AST for sub-tree to generate NoView.

NoView Maintenance. We use the notation △ to represent
the incremental data. As σS (R +△R) = σS (R) + σS (△R),
πP (R + △R) = πP (R) + πP (△R), R1 ◃▹J (R2 + △R2) =
R1 ◃▹J R2 + R1 ◃▹J △R2, and the sort operator can
be inherently supported with NoSQL’s naturally sorted trait,
query with any combination of selection, projection, sort
and join operators can be processed in incremental way
with the same expression as that for NoView generation.
When the columns for aggregation in incremental data set
disjoint with that in NoView, πA(R) ∩ πA(△R) = ∅, we
get AGF (R + △R) =A GF (R) +A GF (△R). Otherwise, the
equation is AGF (R+△R) ̸=A GF (R)+AGF (△R). Therefore,
(1) if NoView is generated by expressions which contain only
fd operators, it can be maintained in an incremental way with
the same expression. (2) When all the aggregation operators
satisfy the above condition, the NoView can be incrementally
maintained. (3) Or the NoView must be re-generated.

NoView Reuse. Different queries may obtain the same or
similar NoViews. Reusing NoView seeks these similarities to
save the storage costs. While NoView is a special view, the
problem can be addressed with Query Graph Model (QGM)
[20]. In QGM, a query is represented as a rooted graph with
different boxes (nodes). Through comparing conditions and
output columns for each two corresponding tree layers from
leaf boxes to the root boxes, we can validate whether the
NoView can be reused. If two candidates are produced by the
same box-line, there are two cases for reusing: (1) Exact reuse.

They are totally the same data set. (2) Subset reuse. One is the
subset of the other one, the corresponding two queries will take
the superset one. For instance, as NoView(PT)={pres_time,
pyc_name, drug_name}, NoView(PN)={pres_time, pyc_name,
drug_name, pyc_number} and they are generated with the
same expression, NoView(PN) can be reused in the query PT.

C. IK: NoSQL data modeling for NoView
The key part is the entrance of NoSQL’s key-value based

world. It plays a critical role in NoSQL data modeling.
An intelligent key can implement the index mechanism in
relational database and facilitate data access.

Common Design Patterns. To begin with, we summarize
several common patterns for intelligent key design in NoSQL.

Composite Key. The composite key puts multiple fields into
row key to keep the related records together, as demonstrated
in Fig. 7(a). For the query PN’s NoView, the key composites
drug_name and pres_time. This composite key design avoids
unnecessary scan. For example, if the time range is the year
of 2014 and the drug name is "penicillin", we only need to
scan records with the start key "penicillin_20140101" and end
key "penicillin_20150101".

Secondary Key. For queries that need to access non-key
data fields, it is straightforward to maintain a secondary key-
value table. As illustrated in Fig. 7(b), the idea is to create
and maintain another table (i.e., the value-key table) with
secondary keys that follow the access pattern.

Implements Sorting. For queries with the sort operator, the
trait of NoSQL’s naturally sorted can be utilized. As shown
in Fig. 7(c), the PT query needs to get the most recent
data. The intelligent key reverses timestamp’s order (with
the function f(dateT ime) we mentioned before) to match
HBase’s ascending lexicographical order. This intelligent key
design will create the property of being able to do a few scans
to quickly obtain the most recently records.

Key Salting. NoSQL splits data among multi-servers. Data in
the same split is lexicographically ordered to store related rows
together. This design potentially leads to servers unavailability.
For example, the time series data will lead to a large amount
of traffic for one specific server. To avoid it, particular tags or
random data will be added to the start of the key to write data
into multiple data splits across the cluster, rather than one at
a time, as demonstrated in Fig. 7(d). Formally, this intelligent
key design pattern is called key salting.

Automatic IK design for NoView. According to the pred-
icates in the query (i.e., the parameters in the where clause)
on NoView and the indexes created in relational database, our
query-aware approach can automate the IK design for NoVIew.
In the running example, two columns (i.e., drug_name and
pres_time) are indexed before migration and the sets of
predicates for two queries are {drug_name} and {drug_name,
pres_time} respectively. We briefly describe our data modeling
algorithm as the following steps.

(1) Migrating Indexes: one index to one secondary key. If a
parameter is in the set of query predicates and the correspond-
ing column attribute is indexed in relational database before

182

NoView: {pyc_name,
drug_name,
pres_time,
drug_number}

A+20100101
A+20100102
A+20100213

A+20101231
A+

..

..

..

..

..

..

..PN

IK design:
drug_name+pres_time

(a) Composite key (b) Secondary key

key value

value key

(c) Implements sorting

A+79859191
A+79859274
A+................

A+79899898
A+79899897

B
B
...
C
E
...

...PT

IK design:
drug_name+f(pres_time)

(d) Key salting

201001
201002
201003

201005
201004

01_201001
01_201005
02_201002

03_201004
02_201003

NoView: {pyc_name,
drug_name,
pres_time}

Fig. 7. Common Patterns for Intelligent Key Design

migration, applying the secondary key pattern for the parame-
ter to implement the index mechanism in NoSQL. Therefore,
we can get one secondary key (IKPT = drug_name)
for the PT query, and two (IK1PN = drug_name and
IK2PN = pres_time) for the PN query.

(2) Parameter composition. For the conjunctive parame-
ters that are connected by the keyword and, applying the
composite key pattern to combine all point parameters and
one range parameter together (if there are more than one
range parameters, our approach chooses one of them). It
should be mentioned that the range parameter should be
placed in the last order. That is, IKPT = drug_name and
IKPN = drug_name+ pres_time.

(3) Combining the attribute with sort operator. Applying the
sorting key pattern to cope with the sort operators. Then, for
the PT query, IKPT = drug_name+f(pres_time), in which
f is the function that encodes the string, which is described in
previous sections according to the descending order.

(4) Redesigning range key for NoView reuse. Different
queries may share a same NoView, but their storage styles
may differ. Without changing the result (i.e., the range scan
from start key to end key is the same as that from end key
to start key), the row key for range parameter can be reversed
to help the NoView reuse. In the end, IKPT = IKPN =
drug_name+ f(pres_time).

The algorithm focuses on the IK design for NoView (note:
we omit the description on HBase’s internal structure as it is
trivial and has light effects on performance). The first step is
general and the later steps figure out more compact form.

V. EVALUATION

We carried out the migration project from June 2013 to May
2014, with nearly 11 months. The migration was from Oracle-
11g on a single server (and a backup server) to a local cluster
of 20 DELL OptiPlex-990 nodes. Each node is equipped with
Intel i7-2600 3.4GHz cores, 16GB RAM and 12TB hard disk
drives. The operating system in each node is Ubuntu-11.04
x86_64. The target Hadoop ecosystem includes Hadoop-1.2.1,
HBase-0.92.0, Hive-0.9.0 and Sqoop-1.4.4.

Methodology. We do not make direct comparisons between
the solutions of relational database and Hadoop ecosystem,
because it is comparing apples to oranges. In practice, as it
is hard to quantify the requirements on parametric queries’
response times. Apart from the documents for quality assur-
ance, we also interacted with application maintainers from our

industry partner and interviewed 42 users to determine whether
the query performance is "satisfactory".

TABLE II
STORAGE AND PERFORMANCE IN RELATIONAL DATABASE

Relational Database Solution
Storage Performance

Basic Table MV Maintenance Query
67 (11.4TB) 26 (4.8TB) > 5hr ↑ 121(37,84,27), 52.9%

Table II lists the basic information before migration.
HEALTH contains 67 relational tables which occupy about
11.4TB data storage, and 26 materialized views with 4.8TB
data size. It usually spent more than 5 hours (↑ means the
time keeps increasing) to maintain the data consistency. There
are 121 queries, including 37 interactive queries and 84 long
running queries. Among the interactive queries, there are 27
ones, of which the response time is closely related with
users’ input parameters. Before migration, the satisfactory rate
for performance is (28 + 39)/121 = 52.9%. It should be
mentioned that, there are 24 reports that are most frequently
produced. But the average cost is more than 6 hours.

This section makes the evaluation to answer three research
questions. (1) What the migration brings and how does data
model transformation benefit the migration? (2) How about
the adoption of different techniques and design patterns in
migration? (3) Are there any practical guidelines or lessons
learned from the experience for developers?

A. Migration Effects
The migration to Hadoop ecosystem gains the overall ad-

vantage on scalability, high performance, and elasticity for
future demands. Due to the designed scalable architecture of
Hadoop ecosystem, the scalability can be inherently achieved
after migration. For the service extension, we have started the
machine learning tasks with Mahout9, the framework based
on Hadoop. Below we concentrate on two important aspects:
the data storage and query performance.

Table III shows the results of two storage solutions for data
migration in Hadoop ecosystem. (1) Data storage. It should be
mentioned that Hadoop has 3 backups for data to get the fault
tolerance, therefore the real data size is three times the size of
the number listed in table. With the hybrid storage solution,
there is about (5.02−4.8)/4.8 = 4.6% extra storage cost when
generating NoView for interactive queries. (2) Performance.

9Apache Mahout. http://mahout.apache.org

183

TABLE III
STORAGE AND PERFORMANCE IN THE SOLUTION OF HADOOP ECOSYSTEM

HDFS Hybrid: HDFS+HBase
Storage Performance Storage Performance

Basic Intermediate Maintenance Query Basic Intermediate Maintenance Query
11.3TB 26 (4.8TB) < 2hr 65.3% 11.3TB 33 (5.02TB) < 2hr 100%

Fig. 8. Technique Adoption

The maintenance tasks have slight impact on applications, for
they are performed in a batch way during midnight. Due to
the computing scalability of MapReduce, the tasks can always
be accomplished within certain time span (< 2hr) and the
maintenance time keeps steady with incremental data size.
After migration, the average cost for the 24 most frequent
reports is reduced to about 80 minutes. To take the advantages
of Hive (on HDFS) and HBase, the hybrid storage solution can
gain the 100% satisfactory rate on query performance over the
65.3% with the sole HDFS.

Summary. Migrating to Hadoop ecosystem achieves the
motivational effects. Though additional storage is required
given the preference for fault tolerance and extra data beyond
basic tables, data size is no longer considered to be the main
bottleneck for most companies. Moreover, data model transfor-
mation benefits the migration with performance improvement
according to requirements of different query types.

B. Adoption of Techniques and Patterns

NoView and IK. There are 27 NoViews generated for 37
interactive queries in HEALTH. Among them there are 5 ones
can be reused for more than one queries. For intelligent key,
there are 43 ones adopted totally. One query may employ more
than one intelligent key patterns, such as the PT query. Fig.
8(a) demonstrates the distribution of different intelligent key
patterns’ usage. The first two intelligent key design patterns
(i.e., the composite key and implementing sort) account for a
large proportion (more than 80%). The salted key is specially
used to avoid data skew when incrementally updating NoView.

Data access pattern after migration. When generating
NoView, the initial SQL will be simplified by its pre-
computation. Then after the IK phase, data access pattern will
be either native HBase API or MapReduce (for range scan).
Fig. 8(b) shows the proportions of them. The hybrid pattern
entails fine-grained tuning, mainly for the queries of which
the performance is closely related to the range of parameter.
Fig. 8(c) shows the query response time with native API and
MapReduce under different row counts. When the data is
small (less than 1250k rows), the native API outperforms the

batch-oriented MapReduce. Conversely, MapReduce is more
appropriate under huge row counts for its parallelism. Our
experiments confirm Phoenix’s open testing results10.

C. Lessons Learned
During our migration practice, we have learned the follow-

ing impressive lessons.
(1) Data structures and algorithms in relational database.

Hadoop ecosystem sacrifices most sophisticated mechanisms
in relational database. In our practice to achieve the similar
benefits, we realized the importance of data structures and
algorithms behind these mechanisms. For example, the NoView
is a special kind of materialized view and the IK implements
the indexes. To some extent, the migration is also the process
of implementing these techniques.

(2) Major shift in data modeling methodology. In our
practice, we found that a number of developers were still ac-
customed to the principle for relational database, and followed
the thinking in the domain of NoSQL. It brought inefficient
results in most time. The principle for relational database is
driven by structure of available data and the main theme is
"design for answers", relying on rigid adherence to database
schema, normalization and joins. However, solutions based
on NoSQL are custom made. It is driven by application-
specific data access patterns. The main methodology can be
summarized as "design for questions". Data is duplicated and
de-normalized as relationship-less [21].

(3) Knowledge on management of Hadoop ecosystem. The
architecture based on Hadoop ecosystem brings much pain
on system management. In 2014, we had coped with 11 non-
technical issues, such as the failover of HBase’s region servers,
MapReduce job’s out of memory error and so on, which moti-
vate another line of our research [24], [25]. Due to the big gap
in administration aspects (i.e., installation, monitoring and etc.)
between the open-source Hadoop ecosystem and the mature
relational database product, developer team’s knowledge on
Hadoop ecosystem is a key factor that should be considered
before migrations. Meanwhile, it is important for enterprises
to keep a team of maintainers.

VI. RELATED WORK

Hadoop ecosystem enhancement. There is a big gap in ad-
minstration tasks (like installation, configuration, maintenance,
monitoring) between mature relational database products and
the open-source Hadoop ecosystem. In recent years, the gap
motivates much effort on assisting approaches and auxiliary
tools. For example, Shang et al. [13] proposed a testing-based

10Phoenix Performance Testing. http://phoenix.apache.org/performance.html

184

approach to uncover the different behavior of the underlying
platforms for big data analytic applications between runs with
small testing data and large real-life data for Hadoop. Another
topic is the study [35], testing [31] and application [30], [41]
of MapReduce programs. Specifically for NoSQL databases,
the SOS platform [4] implements a common programming
interface based on a meta-modeling method that maps the
specific interfaces of the individual systems to a common one.
Michael et al. [40] propose a cost-driven approach to optimize
query performance while minimizing storage overhead. The
core method is to use the cost of executing a given workload
for a given schema to guide the data model design. Most
recently, a web-based tool (KDM) [21], which advocates the
query-driven methodology, is implemented for Cassandra11 to
visualize and support data modeling process.

Schema evolution. Database schema evolves as its applica-
tion. Schema evolution is an extensively studied topic, yielding
various techniques and tools [27], [28], [29]. In NoSQL world,
the importance of schema evolution has also been recognized
due to the sweet spot on data model’s flexibility. [22] defines
a declarative language for NoSQL schema evolution and sup-
ports common operations. ControVol [42] is implemented to
integrate IDEs to detect the schema evolution related problems.
Though schema evolution is not the focus in this paper, the
strategies proposed provide potential methods for further data
evolving in NoSQL database after migration.

Query optimization in NoSQL. Industrial solutions tend to
develop generic index structures in server side, like HuaWei’s
hindex12 and so on. In most cases, index is implemented in
application side, which motivates considerable research work.
For example, geographical queries (e.g., KNN) in location
based service (LBS) applications apply dimension reduction
in NoSQL [38]. Von et al. [33] adopt a heuristic strategy to
build up the secondary index for keywords according the query
distribution. Sfakianakis et al. [34] propose a hybrid approach
to combine the segment tree based index and endpoint index
for interval queries. Nikos et al. present a suite of solutions
to optimize rank-join queries [36], varying from none index
to composite row key based index.

SQL to NoSQL transformation. The problem of SQL-
to-NoSQL data model transformation has raised widespread
concerns, which appear mostly in developer forums, blog
posts and presentations that focus on best practices, common
use cases and sample designs [21]. Current SQL engines
implement adapters to extend the table storage from default
HDFS to NoSQL, such as Hive’s StorageHandler, JackHare
[23] and so on. However, the strategy is data-oriented with
"one-to-one" mapping scheme and focuses on the execution
layer with different computing paradigms. Rather than relying
on the adapters, real-world migrations are usually conducted in
a manual way with custom-developed programs. The migration
experiences (e.g., Netflix13 and [7]) share lessons and provide

11Apache Cassandra. http://cassandra.apache.org
12Hindex. Secondary Index. https://github.com/Huawei-Hadoop/hindex
13http://media.amazonwebservices.com/Netflix_Transition_to_a_Key_v3.pdf

1

Categories
category {PK}
category_name

Products
prod_id {PK}
category
title
actor
price

Family: Products
Products

Family: Catergories
Categories

Row-Key

{
 prod_id: xyz ,
 Categories: { },
 Products: {prod_id: xyz , }
}

Row-Key

Encapsulate(Products, Categories)Row-Key

0..*

 NoView
Categories

Products

Simple
key-value

Extensible
Record

Document
Oriented

Fig. 9. Illustrative Example for Generality Study

guidelines such as "de-normalizing many-to-many relationship
tables to flat-wide tables", "putting attributes together", and
so on. Zhao et al. [8] propose a schema conversion model,
which dedicates on high performance of the join operations
by nesting relevant tables. They implement a graph transform-
ing algorithm to contain all required content. Serrano et al.
[26] develop a heuristic method for transforming relational
schema to HBase with four steps: relation de-normalization,
extended table merging, key encoding and views based on
indexes. They also consider data access patterns to improve
the transformation quality in a post-processing phase. These
work conducts the data-first transformation without knowing
any queries. The common way can be summarized as: to keep
basic tables or to join all relationships (i.e., one-to-one, one-
to-many and many-to-many) to get flat-wide tables for any
upcoming ad-hoc queries. The so-called "nesting" techniques
are indeed to join of attributes and encapsulate them into the
nested internal structures in NoSQL’s data model. Compared
with them, our approach is specifically driven by the queries to
get fine-grained results rather than the method of "universal"
tables first and heuristic optimizations later. Moreover, our
approach can also cover these work by defining a special
NoView according to the above common way. From another
perspective, our approach bridges both relational view system
(Hive) and NoSQL system (HBase) in the same architecture,
which is similar to that of CoSQL [39].

VII. DISCUSSION

A. Generality

This section makes an in-depth study on the generality of
our transformation approach. We borrow two relational tables
from the DVD selling example used in [26], as shown in Fig. 9.
From a methodology perspective, the two fundamental compo-
nents (i.e., NoView and IK) are the abstractions of professional
data modeling manners for expert NoSQL developers.
• Insights in NoView. NoView reflects the query-driven disci-

ple to determine data elements stored in NoSQL, rather than
the data-first manner and Normal Form theory for relational
database. In different situations, NoView can be obtained or
calculated from different inputs or conceptual models. For
instance, our approach extracts NoView through the well-
expressed SQL language as a reverse engineering process
from the traditional solution. Another typical scenario is
the design phase for a new application based on require-
ment specifications, queries may be documented as natural

185

language (e.g., "Find products and category information of
the product with ID 2179" in [26]). In such case, NoView
(i.e., underline attributes) need to be figured out by other
corresponding techniques and tools.

• Insights in IK. Previous studies [7], [21], [33], [26] have
pointed out the importance of row-key to decide data
structures in NoSQL. Given a query, IK attempts to take best
benefits of data entrance to implement as more operators in
the storage layer as possible. Otherwise, row-key turns into
a unique identifier for a record. From another view, row-key
can be seen as the connector to join different attributes in
NoSQL’s internal data structures, such as different column
families indexed by the same row-key in HBase.
Though our approach is proposed against the background of

data migration, the essence of two fundamental components
decides its generality in other application areas. Even the com-
ponents may not be combined as a full automatic approach,
they can be extended or separately adopted. Below we discuss
how to generalize our approach to the other cases.

Generalize to the case with no query. Despite of NoSQL’s
query-driven nature, there are many application areas that
require to design data model first without knowing any queries.
In such case, there are two frequent ways: (i) keep basic tables
or (ii) join all relationships (i.e., one-to-one, one-to-many and
many-to-many) to get flat-wide tables for any upcoming ad-
hoc queries. Therefore, we can extend NoView to cover this
case by defining a special view under no query input. For
example, NoView is the join of two tables in Fig. 9. As there
is no query, the row-key plays the role as a unique identifier,
without applying IK design techniques.

Generalize to other NoSQL systems. There are many
kinds of NoSQL systems. With respect to data model, a very
common way is to classify them into (1) simple key-value
stores, (2) documents stores and (3) extensible records stores
[22], [33]. In a unified way, we can denote them as key-
structure. The structure part represents different data structures
accordingly to different NoSQL databases, for example the
nested column family: column in HBase and json in document-
oriented MongoDB14. The function of the structure part is to
organize logic-related attributes together, which is equivalent
to the join operation in query layer. In our approach, NoView
is independent with concrete NoSQL data model, and IK
concentrates on the common row-key part for all NoSQL data
model variants. Though we put forward the techniques and
patterns based on HBase, they can be easily generalized to
other NoSQL systems. Fig. 9 shows the actions in different
NoSQL databases to implement the logic in NoView.

Generalize to other application types. The query-aware
approach tailored to the context of data analytics applications,
and functions on read-only query workloads. For other ap-
plications that contain updates which implicitly constrain the
amount of denormalization, a heuristic strategy on tradeoff
of maintenance cost and query performance is necessary. In
such cases, though the approach cannot be applied directly, by

14https://www.mongodb.org

incorporating a cost model [40], the method of NoView and
IK design patterns are still appropriate. For extension purpose,
NoView can be seen as a "core" for further schema evolution
operations (e.g., to move or add attributes based on NoView).

B. Threats to validity
Threats to internal validity concern our selection of big data

frameworks, classification of workload types and metrics used
to evaluate migration quality. There are many other available
frameworks in Hadoop ecosystem and our approach does
not consider platform-specific techniques, such as the CQL
language for Cassandra, leading to the loss of some unique
optimizations chances. The metrics we used to evaluate the
transformation quality are data storage and query performance
in the context of data analytics applications. However, they
may be different for other kinds of applications. For example,
data equivalence [26] is also an important metric for applica-
tions that involve data modification.

Threats to external validity concern the possibility to gen-
eralize our work and results. To begin with, it is not safe
to say that Hadoop ecosystem is suitable for all big data
applications. The work on data analytics application in this
paper may not provide enough diversity in the applications
to ensure generality of our conclusions, for example to other
application types. To address this threat, more case studies in
the application migrations have to be conducted.

VIII. CONCLUSION AND FUTURE WORK

Migrating legacy applications to more modern platforms
is a recurring software development activity. In the big data
era, more than ever enterprises are confronted with the data-
driven software maintenance and evolution challenges. This
paper presents the migration of a real-world data analytics
application to Hadoop ecosystem. We present the architecture
re-design to demonstrate the method in big data environment.
We focus on the SQL-to-NoSQL data model transformation
problem and propose an automatic query-aware approach to
free developers from tedious manual work. We believe that our
work can provide insightful guidelines for other migrations.

Our future work can be divided into two aspects. The first
one is to develop a unified query engine, which inherently
supports multiple heterogeneous data storages. The other one
is the further study on SQL-to-NoSQL data model transforma-
tion problem. With the widely adoption of NoSQL databases,
this topic is worthy of attention. Here, we raise some research
problems. (1) Domain specific languages (DSL) and tools
with heuristic rules to support transformation. (2) Automatic
approaches with cost model for other specific applications.

ACKNOWLEDGMENT

We acknowledge the anonymous reviewers for their insight-
ful comments and suggestions. This work was supported by
Chinese Academy of Sciences STS Project (KFJ-SW-STS-
155), Major Programs of the General Logistics Department
(AWS14R013), and National Key Research and Development
Plan Program (2016YFB1000103).

186

REFERENCES

[1] H. M. Chen, R. Kazman, S. Haziyev and O. Hrytsay, "Big Data System
Development: An Embedded Case Study with a Global Outsourcing
Firm," in Proceedings of the 1st International Workshop on Big Data
Software Engineering (BIGDSE/ICSE), 2015, pp. 44-50.

[2] S. Ghemawat, H. Gobioff and S. T. Leung, "The Google File System,"
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), 2003, pp. 29-43.

[3] J. Dean and S. Ghemawat, "Mapreduce: Simplified Data Processing on
Large Clusters," in 6th Symposium on Operating System Design and
Implementation (OSDI), 2004, pp. 137-150.

[4] P. Atzeni, F. Bugiotti and L. Rossi, "Uniform Access to Non-relational
Database Systems: The SOS Platform," in Proceedings of the 24th
International Conference on Advanced Information Systems Engineering
(CAiSE), 2012, pp. 160-174.

[5] K. Harezlak and R. Skowron, "Performance Aspects of Migrating a Web
Application from a Relational to a NoSQL Database," in Proceedings
of the 11th International Conference Beyond Databases, Architectures
and Structures (BDAS), 2015, pp. 107-115.

[6] Y. Wang, Y. Z. Xu, Y. Liu, J. Chen and S. L. Hu, "QMapper for Smart
Grid: Migrating SQL-based Application to Hive," in Proceedings of the
Conference on Management of Data (SIGMOD), 2015, pp. 647-658.

[7] A. Schram and K. M. Anderson, "MySQL to NoSQL: Data Modeling
Challenges in Supporting Scalability," in Proceedings of the Conference
on Systems, Programming, and Applications: Software for Humanity
(SPLASH), 2012, pp. 191-202.

[8] G. S. Zhao, L. B. Li, Z. J. Li and Q. Y. Lin, "Multiple Nested
Schema of HBase for Migration from SQL," in Proceedings of the Ninth
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2014, pp. 338-343.

[9] M. Stonebraker and U. cetintemel, "One Size Fits All: An Idea Whose
Time Has Come and Gone," in Proceedings of the 21st International
Conference on Data Engineering (ICDE), 2011, pp. 2-11.

[10] H. Herodotou, F. Dong and S. Babu, "No One (Cluster) Size Fits All:
Automatic Cluster Sizing for Data-intensive Analytics," in Proceedings
of the Symposium on Cloud Computing (SOCC), 2011, pp. 18-18.

[11] C. Bondiombouy, B. Kolev, O. Levchenko and P. Valduriez, "Integrating
Big Data and Relational Data with a Functional SQL-like Query
Language," in Proceedings of the 26th International Conference on
Database and Expert Systems Applications (DEXA), 2015, pp. 170-185.

[12] J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura, N. Polyzo-
tis and M. J. Carey, "MISO: Souping up Big Data Query Processing with
a Multistore System," in Proceedings of the International Conference on
Management of Data (SIGMOD), 2014, pp. 1591-1602.

[13] W. Y. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan and P.
Martin, "Assisting Developers of Big Data Analytics Applications when
Deploying on Hadoop Clouds,", in Proceedings of the 35th International
Conference on Software Engineering (ICSE), 2013, pp. 402-411.

[14] S. Agrawal, S. Chaudhuri and V. R. Narasayya, "Automated Selection
of Materialized Views and Indexes in SQL Databases," in Proceedings
of the 26th International Conference on Very Large Data Bases (VLDB),
2000, pp. 496-505.

[15] R. DeLine, "Research Opportunities for the Big Data Era of Software
Engineering," in Proceedings of the 1st International Workshop on Big
Data Software Engineering (BIGDSE/ICSE), 2015, pp. 26-29.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, F. Chakka, N. Zhang, S.
Anthony, H. Liu and R. Murthy, "Hive-a Petabyte Scale Data Warehouse
Using Hadoop," in Proceedings of the 26th International Conference on
Data Engineering (ICDE), 2010, pp. 996-1005.

[17] F. Chang, J. Dean, S. Ghemawat, D. Wallach, M. Burrows, T. Chandra,
A. Fikes and R. Gruber, "Bigtable: A Distributed Storage System for
Structured Data," in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006, pp. 205-218.

[18] F. Matthes, C. Schulz and K. Haller, "Testing & Quality Assurance
in Data Migration Projects," in Proceedings of the 27th International
Conference on Software Maintenance (ICSM), 2011, pp. 438-447.

[19] H. Z. Yang and P. A. Larson, "Query Transformation for PSJ-Queries,"
in Proceedings of the 13th International Conference on Very Large Data
Bases (VLDB), 1987, pp. 245-254.

[20] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh and M. Urata,
"Answering Complex SQL Queries Using Automatic Summary Tables,"
in Proceedings of the International Conference on Management of Data
(SIGMOD), 2000, pp. 105-116.

[21] A. Chebotko, A. Kashlev and S. Y. Lu, "A Big Data Modeling Method-
ology for Apache Cassandra," in Proceedings of the IEEE Congress on
Big Data (BigDataCongress), 2015, pp. 238-245.

[22] S. Scherzinger, M. Klettke and U. Storl, "Managing Schema Evolution
in NoSQL Data Stores," in Proceedings of the 14th International
Symposium on Database Programming Languages (DBPL), 2013.

[23] W. C. Chung, H. P. Lin, S. C. Chen, M. F. Jiang and Y. C. Chung, "Jack-
Hare: a Framework for SQL to NoSQL Translation Using MapReduce,"
Automated Software Engineering (ASE), 2014, 21(4):489-508.

[24] L. Xu, J. Liu and J. Wei, "FMEM: A Fine-grained Memory Estimator for
MapReduce Jobs," in Proceedings of the 10th International Conference
on Autonomic Computing (ICAC), 2013, pp. 65-68.

[25] L. Xu, W. Dou, F. Zhu, C. Gao, J. Liu, H. Zhong and J. Wei, "A Char-
acteristic Study on Out of Memory Errors in Distributed Data-Parallel
Applications," in Proceedings of the 26th International Symposium on
Software Reliability Engineering (ISSRE), 2015, pp. 518-529.

[26] D. Serrano, D. Han and E. Stroulia, "From Relations to Multi-
dimensional Maps: Towards an SQL-to-HBase Transformation Method-
ology," in Proceedings of the 8th International Conference on Cloud
Computing (Cloud), 2015, 81-89.

[27] G. Papastefanatos, F. Anagnostou, Y. Vassiliou and P. Vassiliadis, "H-
ecataeus: A What-if Analysis Tool for Database Schema Evolution," in
Proceedings of the 12th European Conference on Software Maintenance
and Reengineering (CSMR), 2008, pp. 326-328.

[28] A. Cleve, J. Henrard, and J. L. Hainaut, "Data Reverse Engineering
using System Dependency Graphs," in Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE), 2006, pp. 157-166.

[29] L. Meurice and A. Cleve, "DAHLIA: A Visual Analyzer of Database
Schema Evolution," in Proceedings of the Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
2014, pp. 464-468.

[30] W. Y. Shang, B. Adams and A. E. Hassan, "An Experience Report on
Scaling Tools for Mining Software Repositories Using MapReduce,"
in Proceedings of the 25th International Conference on Automated
Software Engineering (ASE), 2010, pp. 275-284.

[31] C. Csallner, L. Fegaras and C. K. Li, "Testing Mapreduce-style Program-
s," in Proceedings of the 19th SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), 2011, pp. 503-507.

[32] M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos, N. Hachem and
P. Helland, "The End of an Architectural Era (It’s Time for a Complete
Rewrite)," in Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB), 2007, pp. 1150-1160.

[33] C. von der Weth and A. Datta, "Multiterm Keyword Search in NoSQL
Systems," IEEE Internet Computing, 2012, 16(1):34-42.

[34] G. Sfakianakis, I. Patlakas, N. Ntarmos and P. Triantafillou, "Interval
Indexing and Querying on Key-Value Cloud Stores," in Proceedings of
the 29th International Conference on Data Engineering (ICDE), 2013,
pp. 805-816.

[35] T. Xiao, J. X Zhang, H. C Zhou, Z. Y. Guo, S. McDirmid, W. Lin,
W. G Chen and L. D. Zhou, "Nondeterminism in MapReduce Consid-
ered Harmful? An Empirical Study on Non-commutative Aggregators
in MapReduce Programs," in Proceedings of the 36th International
Conference on Software Engineering (ICSE), 2014, pp. 44-53.

[36] N. Ntarmos, I. Patlakas and P. Triantafillou, "Rank Join Queries in
NoSQL Databases," in Proceedings of the International Conference on
Very Large Data Bases (VLDB), 2014, pp. 493-504.

[37] F. Villanustre, "Industrial Big Data Analytics: Lessons from the Trench-
es," in Proceedings of the 1st International Workshop on Big Data
Software Engineering (BIGDSE/ICSE), 2015, pp. 1-3.

[38] N. Dimiduk, A. Khurana, M. H. Ryan and M. Stack. HBase in Action.
Shelter Island: Manning, 2013.

[39] E. Meijer and G. M. Bierman, "A Co-relational Model of Data for Large
Shared Data Banks," Commun. ACM, 2011, 54(4):49-58.

[40] M. J. Mior, "Automated Schema Design for NoSQL Databases," in
Proceedings of the International Conference on Management of Data
(SIGMOD), 2014, pp. 41-45.

[41] J. J. Stephen, S. Savvides, R. Seidel and P. Eugster, "Program Analysis
for Secure Big Data Processing," in Proceedings of International Con-
ference on Automated Software Engineering (ASE), 2014, pp. 277-288.

[42] S. Scherzinger, T. Cerqueus and E. C. Almeida, "ControVol: A Frame-
work for Controlled Schema Evolution in NoSQL Application Devel-
opment," in Proceedings of the 31th International Conference on Data
Engineering (ICDE), 2015, pp. 1464-1467.

187

