
Proving Cypher Query Equivalence

Lei Tang∗†, Wensheng Dou∗†‡§, Yingying Zheng∗†, Lijie Xu∗†, Wei Wang∗†‡§, Jun Wei∗†‡§, Tao Huang∗†
∗Key Lab of System Software, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

†University of Chinese Academy of Sciences, Beijing
‡University of Chinese Academy of Sciences, Nanjing, §Nanjing Institute of Software Technology

{tanglei20, wsdou, zhengyingying14, xulijie09, wangwei, wj, tao}@otcaix.iscas.ac.cn

Abstract—Graph database systems store graph data as nodes
and relationships, and utilize graph query languages (e.g.,
Cypher) for efficiently querying graph data. Proving the equiva-
lence of graph queries is an important foundation for optimizing
graph query performance, ensuring graph query reliability, etc.
Although researchers have proposed many SQL query equiv-
alence provers for relational database systems, these provers
cannot be directly applied to prove the equivalence of graph
queries. The difficulty lies in the fact that graph query languages
(e.g., Cypher) adopt significantly different data models (property
graph model vs. relational model) and query patterns (graph
pattern matching vs. tabular tuple calculus) from SQL.

In this paper, we propose GraphQE, an automated prover to
determine whether two Cypher queries are semantically equiva-
lent. We design a U-semiring based Cypher algebraic represen-
tation to model the semantics of Cypher queries. Our Cypher
algebraic representation is built on the algebraic structure of
unbounded semirings, and can sufficiently express nodes and
relationships in property graphs and complex Cypher queries.
Then, determining the equivalence of two Cypher queries is
transformed into determining the equivalence of the correspond-
ing Cypher algebraic representations, which can be verified by
SMT solvers. To evaluate the effectiveness of GraphQE, we
construct a dataset consisting of 148 pairs of equivalent Cypher
queries. Among them, we have successfully proven 138 pairs
of equivalent Cypher queries, demonstrating the effectiveness of
GraphQE.

I. INTRODUCTION

Graph database systems (GDBs) are designed to efficiently
store and retrieve graph data. Graph storage technologies [20],
[39] have developed rapidly, and many GDBs have emerged,
e.g., Neo4j [35], Microsoft Azure Cosmos [1], ArangoDB [5]
and Memgraph [9]. GDBs have been widely used in many
applications, e.g., knowledge graphs [47], fraud detection [42],
molecular and cell biology [23], and social networks [25].
Recent reports [6], [31] also show that GDBs have gained
almost 1,000% popularity growth since 2013 and reached a
market of around 1.7 billion dollars by 2023.

Most GDBs (e.g., Neo4j [35], ArangoDB [5] and OrientDB
[43]) are built on the property graph model [11], in which
graph data are stored as nodes and relationships along with
their properties. Fig. 1 shows an illustrative property graph
that consists of four nodes and three relationships. Specifically,
each relationship is directed and describes a path from one
node to another (or itself), e.g., relationship r1 connects node
n1 and n2. The property graph model leverages labels to shape
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the domain of nodes and relationships. Nodes (or relationships)
that have the same label are categorized into the same set, e.g.,
node n1, n3 and n4 are categorized by label Person.

GDBs adopt graph query languages (e.g., Cypher [27],
Gremlin [7] and GQL [21], [32]) to define graph patterns,
and utilize isomorphic [46] or homomorphic [12] graph pattern
matching to effectively retrieve graph data. Among these graph
query languages, Cypher is one of the most widely-used
languages, and supported by 4 out of the top 10 GDBs in DB-
Engines Ranking [6]. Listing 1 shows an example of a Cypher
query that defines a graph pattern to retrieve the author of the
book read by Alice in the property graph in Fig. 1.

Query equivalence proving is a fundamental problem in
database research [14], [18], [44], and has been widely
applied in detecting query optimization bugs [28], mining
query rewriting rules [49], eliminating query computational
overlaps [55], etc. We have witnessed the significant progress
of SQL query equivalence provers [16], [17], [22], [29], [48],
[49], [54], [55] for relational database systems since 2018.
Initially, syntax-based approaches [16], [17], [29], [54], [55]
are proposed to prove SQL query equivalence by checking
the syntactic isomorphism of SQL algebraic representations
(e.g., K-relations [29]). Although these approaches can prove
SQL query equivalence to a certain extent, they struggle with
handling SQL queries that have significantly different syntac-
tic structures. Recently, researchers [22], [48], [49] propose
semantic-based approaches to solve this problem. These ap-
proaches use U-semiring based SQL algebraic representations
[16] to model the semantics of SQL queries, and construct
the U-semiring expression for a SQL query (U-expression for
short). U-expression is a natural number semiring expression
and models a SQL query Q as an expression u(t) that returns
the natural number multiplicity of a tuple t in Q’s query
result. Semantic-based approaches solve the equivalence of
SQL queries by proving the equivalence of U-expressions
on arbitrary input tuple t based on SMT solvers [19]. The
state-of-the-art semantic-based prover SQLSolver [22] has
demonstrated that its effectiveness significantly surpasses that
of syntax-based approaches [16], [54], [55].

Similar to SQL equivalence provers for relational database
systems, graph query equivalence provers also have significant
value for GDBs, and can be applied in detecting graph
query optimization bugs [33], [52], [53], mining graph query
optimization rules [30], optimizing graph queries [14], etc.
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Fig. 1. An illustrative property graph. We assign a variable (e.g., n1 and r1)
for each node and relationship for easy reference.

1 MATCH (reader:Person)-[:READ]->(book:Book)<-[:
WRITE]-(writer)

2 WHERE reader.name = ’Alice’
3 RETURN writer.name

Listing 1. A Cypher query retrieves the author of the book read by Alice.

However, we still lack a graph query equivalence prover.
Graph query languages (e.g., Cypher) employ significantly
different syntaxes from SQL, and are built on the property
graph model and graph pattern matching. In contrast, U-
expressions [16] are built on the relational data model and
tabular tuple calculus utilized by SQL. Therefore, we cannot
directly apply U-expressions to model Cypher queries.

To model Cypher queries using U-expressions [16], we first
need to transform property graphs into relational tables. For
example, Cytosm [45] groups nodes and relationships in a
property graph by their labels and generates an individual table
for each label. Then, we can potentially use U-expressions on
these generated tables to model some Cypher features, e.g.,
predicates and unions. However, some Cypher features cannot
be modeled in this way due to the limitation of U-expressions.
First, based on the tables generated by Cytosm, U-expressions
cannot model node and relationship patterns either without
specifying labels or with multiple labels, e.g., node pattern
(writer) in Listing 1 that is not associated with any label.
Second, U-expressions cannot model some specific Cypher
features, e.g., arbitrary-length paths (e.g., ()-[*]->()) and
list variables with UNWIND and COLLECT. Third, Chu et al.
[16] cannot support some common features supported by SQL
and Cypher e.g., ORDER BY, LIMIT and SKIP.

In this paper, we propose a U-semiring based graph-native
algebraic representation to accurately model property graphs
and Cypher queries, and construct U-semiring expressions for
Cypher queries (G-expression for short). G-expressions can
model nodes and relationships in property graphs and complex
features in Cypher queries. We then transform proving the
equivalence of Cypher queries into proving the equivalence of
G-expressions on an unspecified property graph. We further
leverage the LIA* theory [22] to prove the equivalence of G-
expressions by SMT solvers [19].

To model property graphs, we define three algebraic
functions Node(e), Rel(e), and Lab(e, label) to precisely
model a graph entity e’s type (i.e., node or relation-
ship) and labels (whether e has a label label) in prop-

erty graphs, respectively. Thus, G-expressions can model
node and relationship patterns without specifying labels or
with multiple labels. For example, G-expression models
the node pattern (reader:Person) as Node(reader) ×
Lab(reader, Person) and the node pattern (writer) with-
out specifying any label as Node(writer). We further define
algebraic functions to model the outgoing and incoming nodes
of a relationship. Based on these algebraic functions, we
construct a U-semiring based algebraic representation for
Cypher’s core features, including graph patterns, predicates
and query results, e.g., MATCH, WHERE and RETURN clauses.
We can further model advanced Cypher features, e.g., using
uninterpreted functions in SMT to model arbitrary-length
paths, and designing a divide-and-conquer proving process to
handle ORDER BY, LIMIT and SKIP.

We implement our approach on Cypher 9 in the openCypher
project [2] as GraphQE. To evaluate GraphQE, we construct
a dataset CyEqSet with 148 pairs of equivalent Cypher
queries through the following two methods. (1) We translate
the equivalent SQL query pairs in Calcite [4], a widely-
used open-source dataset of equivalent SQL queries [16],
[22], [49], [55], to their corresponding Cypher queries, and
successfully construct 79 pairs of equivalent Cypher queries.
(2) We collect 36 real-world Cypher queries from popular
open-source graph database benchmarks [24] and widely-used
open-source Cypher projects [8], [13]. Then, we construct
equivalent Cypher queries by applying three existing Cypher
query rewriting rules [30], [33], and obtain 68 pairs of
equivalent Cypher queries. CyEqSet contains both simple
and complex graph patterns, e.g., optional graph patterns
(OPTIONAL) and variable-length paths (-[*2..3]->). Fi-
nally, we evaluate GraphQE on CyEqSet, and GraphQE
has successfully proven 138 pairs of them with a latency of
38 ms on average. GraphQE and CyEqSet are available at
https://github.com/choeoe/GraphQe.

In summary, we make the following contributions.
• We propose a U-semiring based graph-native algebraic

representation for property graphs and Cypher queries.
• We propose GraphQE, the first graph query equivalence

prover for Cypher queries.
• We construct CyEqSet, the first dataset with 148 pairs

of equivalent Cypher queries for Cypher query equivalence
proving.

• We evaluate GraphQE on CyEqSet. GraphQE success-
fully proves 138 out of 148 pairs of equivalent Cypher
queries.

II. PRELIMINARIES

In this section, we first introduce the property graph model
(Section II-A). Next, we explain Cypher and its graph pattern
matching mechanism (Section II-B). Finally, we introduce
the U-semiring algebraic structure and how to model SQL
semantics on U-semiring (Section II-C).

A. Property Graph Model
Most GDBs (e.g., Neo4j [35], JanusGraph [3], OrientDB

[43] and ArangoDB [5]) adopt the property graph model [11],



MATCH  (p1:Person) - [x] -> (:Book) <- [y] - (p2:Person)  WHERE p1.age = 59

RETURN  p1.name

Graph pattern

Query result

Predicate

Fig. 2. The basic structure of a Cypher query.

[36] to store graph data. In the property graph model, each
node or relationship contains a set of properties. Each relation-
ship connects a node to another (or itself). The property graph
model utilizes labels to categorize nodes (or relationships) into
different sets, in which all nodes (or relationships) with a
certain label belong to the same set.

Different graph query languages may adopt different prop-
erty graph models. For example, although GQL is fully
compatible with Cypher, they adopt slightly different property
graph models. Cypher only supports directed relationships
and requires each relationship to have only one label, while
GQL further supports undirected relationships and allows a
relationship to have more than one label. Cypher adopts
relationship-injective semantics when mapping relationship
patterns to relationships in property graphs, while GQL does
not. In this paper, we mainly focus on Cypher1, and we present
the formal definition of a property graph model adopted by
Cypher as follows.

Definition 1. A property graph used by Cypher is denoted as
a tuple G = ⟨N,R, ρ, λ, σ⟩, where

1) N is a finite set of nodes used in G.
2) R is a finite set of directed relationships used in G.
3) ρ : R → N × N is a function that maps a directed

relationship from R to its outgoing and incoming nodes
from N .

4) λ : N ∪ R → 2L is a labeling function that associates
each node or relationship to a finite set of labels from L
(the full set of labels). In Cypher, a node can have one
or multiple labels, and a relationship can have only one
label.

5) σ : (N ∪ R) × K → Const is a partial function that
associates a constant with a node (or relationship) and
a property key from K (the full set of property keys).

Take the property graph in Fig. 1 as an example. In this
property graph, four nodes form a finite node set N =
{n1, n2, n3, n4}, and three relationships form a finite relation-
ship set R = {r1, r2, r3}. For relationship r1, which connects
the outgoing node n1 and incoming node n2 (i.e., ρ(r1) =
⟨n1, n2⟩), has a label WRITE (i.e., λ(r1) = {WRITE}),
and has a property key date whose value is 1997 (i.e.,
σ(r1, date) = 1997).

B. Cypher & Graph Pattern Matching

Cypher is developed by Neo4j [35] and has been supported
by many GDBs, e.g., MemGraph [9], SAP HANA [26],

1GQL is a new standard graph query language that extends Cypher.
Although there are some differences, GQL and Cypher share many similarities
in both syntaxes and semantics. It would be interesting to perform a similar
study for GQL in the future.

and NebulaGraph [50]. Cypher is a declarative graph query
language, which adopts graph pattern matching for querying
nodes and relationships in property graphs.

Cypher utilizes MATCH clause to define a graph pattern
(e.g., the graph pattern in Fig. 2). This graph pattern defines
three node patterns, i.e., (p1:Person), (:Book), and
(p2:Person), and two relationship patterns, i.e., -[x]->
and <-[y]-. It also contains a predicate p1.age=59 speci-
fied in the WHERE clause. Cypher utilizes the RETURN clause
to specify which parts of data should be returned. For example,
RETURN p1.name in Fig. 2 indicates that the query result
should be the values of the property name of node p1.

Besides the above core features, Cypher also supports
complex graph patterns. Cypher allows for multiple graph
patterns in chained MATCH clauses, such as MATCH (n1)
MATCH (n2)-[]->(n3). The results matched by each
graph pattern are combined through Cartesian product. Cypher
provides OPTIONAL MATCH clause to define optional graph
patterns that may or may not exist in a property graph.
Cypher graph patterns can include variable-length paths, e.g.,
(n1)-[*1..3]->(n2) matches a path with 1 to 3 rela-
tionships. Cypher also supports sorting and aggregates on the
query result, such as ORDER BY or COUNT(). Furthermore,
multiple Cypher queries can be combined by UNION ALL
clause that unions the single query results under bag semantics.

Cypher graph pattern matching. Graph pattern matching
serves as the foundation of graph query languages (e.g.,
Cypher and Gremlin). Graph pattern matching maps node and
relationship patterns to nodes and relationships in property
graph, e.g., node pattern (p1:Person) in the Cypher query
of Fig. 2 can match node n1 in the property graph of Fig. 1.
Cypher adopts isomorphism-based graph pattern matching to
query property graphs as follows.

Definition 2. Given a property graph G = ⟨N,R, ρ, λ, σ⟩,
a graph pattern on G is defined as Gp = ⟨Np, Rp, ρp, ϕp⟩.
Here Np is a finite set of node patterns, Rp is a finite set of
relationship patterns, ρp : Rp → Np × Np is a function that
projects a relationship pattern to its outgoing and incoming
node patterns, and ϕp is a boolean expression constructed on
a finite set of node patterns from Np and relationship patterns
from Rp. A graph pattern matching aims to find all possible
mappings fn and fr, which satisfy the following conditions.

1) fn : Np → N maps a node pattern to a node in G.
2) fr : Rp → R is an injective mapping that maps a

relationship pattern to a relationship in G.
3) For each rn ∈ Rn and rp ∈ Rp, the specified labels in rn

and rp are a subset of fn(np) and fr(rp), respectively.
4) fn and fr are structure-preserving, i.e., for each rp ∈ Rp,

if ρp(rp) = ⟨np1 ∈ Np, np2 ∈ Np⟩, fr(rp) = r ∈ R and
ρ(r) = ⟨n1, n2⟩, then fn(np1) = n1 and fn(np2) = n2.

5) If each node pattern np ∈ Np and relationship pattern
rp ∈ Rp used in ϕp are replaced by their corresponding
mapped node fn(np) and relationship fr(rp) in G, ϕp

holds True.



Note that Cypher assigns variables to node and relationship
patterns (e.g., variable p1 in node pattern (p1:Person)) for
their references. Node or relationship patterns that share the
same variable are considered to match the same graph entity.
Different from other graph query languages, Cypher applies
injective mapping from relationship patterns to relationships
in property graphs, i.e., they adopt the so-called relationship-
injective semantics [11], [35]. Specifically, in Cypher queries,
different relationship patterns (which are assigned to different
variables) defined within the same MATCH clause are not
allowed to match the same relationship in the property graph.
Take the query in Fig. 2 as an example. Relationship-injective
semantics require that relationship patterns x and y must map
to different relationships in Fig. 1, e.g.,

fn(p1) → n1, fn(p2) → n3, fr(x) → r1, fr(y) → r2

In contrast, relationship-injective semantics do not permit the
following mapping.

fn(p1) → n1, fn(p2) → n1, fr(x) → r1, fr(y) → r1

C. U-semiring & U-semiring SQL Semantics
U-semiring. Unbounded semiring (U-semiring for short)

[16] is a natural number semiring with unbounded summation.
U-semiring extends the commutative semiring [29] with new
operators (

∑
, ∥ · ∥, not(·)) and is defined as follows.

Definition 3. U-semiring is a commutative natural number
semiring denoted as (N, 0, 1,+,×, ∥ · ∥, not(·),

∑
), where

1) The squash operator ∥ · ∥ is unary and transforms an
input value into an output between 0 and 1, e.g., ∥0∥ =
0, ∥1 + x∥ = 1. Squash operator is commonly used to
deduplicate query results under bag semantics.

2) The not(·) operator is unary and reverses an input
boolean value, e,g, not(1) = 0, not(0) = 1.

3)
∑

t∈D E(t) takes an expression E(t) as input and outputs
a natural value. Specifically,

∑
is used to enumerate all

variable (set) t within a given domain D for E(t) and
accumulate the output values.

U-semiring also adopts semiring operator [ϕ] from K-
relation [29] that takes a boolean expression ϕ as input, and
outputs 1 for true, 0 for false. [ϕ] transforms a boolean value
into integer for arithmetic × and + under semiring semantics.

U-semiring SQL algebraic representation. Based on U-
semiring, Chu et al. [16] propose an algebraic representation
to model SQL queries under bag semantics and construct U-
semiring expressions for SQL (U-expression for short). U-
expression defines table function R(t) to return the multiplicity
of tuple t in table R. Then U-expression models a SQL query
as an expression u(t) that returns the multiplicity of tuple t
in the query result. For example, a SQL query

SELECT c1 FROM R WHERE c2 = 1

is modeled as a U-expression
u(t) =

∑
t1
[t = t1.c1]×R(t1)× [t1.c2 = 1]

This U-expression returns the multiplicity of an arbitrary
tuple t in the query result by counting all possible tuple t1 in

table R using
∑

t1
, and filters the predicate t1.c2 = 1 using

[t1.c2 = 1]. [t = t1.c1] expresses the projection that each tuple
t in the query result is the column c1 of a tuple t1 in R.

U-expression can also model complex SQL features. For
subqueries combined by UNION, U-expression recursively
models the subqueries and combines them using semiring
operator +. For tables joined together, U-expression multiplies
table functions, e.g., R(t1)× S(t2).

By using U-expressions, proving the equivalence of SQL
queries is transformed into proving the equivalence of U-
expressions. To prove the equivalence of U-expressions, UDP
[16] formalizes U-expressions using axioms, creating a canon-
ical form that allows for isomorphism checking between U-
expressions. Additionally, SQLSolver [22] leverages LIA*
theory to eliminate

∑
in U-expressions, modeling them as

first-order logical expressions that are verified by SMT solvers.

III. OVERVIEW

To prove the equivalence of Cypher queries, we first for-
malize the problem of Cypher query equivalence under bag
semantics in Section III-A. We then explain the basic idea
of modeling the Cypher semantics based on U-semiring in
Section III-B. Finally, we introduce the workflow of our
Cypher equivalence prover in Section III-C.

A. Problem Formulation

Cypher queries return tabular results under bag semantics
that allow for duplicates. Two Cypher queries Q1 and Q2 are
equivalent if their results consist of the same tuples, and the
multiplicity of any tuple t in their results is equal. Additionally,
if Cypher queries return ordered results (e.g., queries with
ORDER BY clauses), any two tuples t1 and t2 appear in the
same order in the results of both queries Q1 and Q2.

For two Cypher queries Q1 and Q2 with ORDER BY
clauses, if their corresponding sub-queries Q

′

1 and Q
′

2 without
ORDER BY clauses are equivalent, and Q1 and Q2 sort the
query results returned by Q

′

1 and Q
′

2 according to the same
ORDER BY expressions, we can say that Q1 and Q2 are
equivalent.

Therefore, the Cypher query equivalence under the ordered
bag semantics can be defined as follows.

Definition 4. If two Cypher queries Q1 and Q2 are equivalent,
they need to satisfy the following conditions.

1) The results of Q1 and Q2 contain the same tuples.
2) The multiplicity of any tuple t in the results of Q1 and

Q2 is equal.
3) If Q1 or Q2 contains the ORDER BY clauses, their

corresponding sub-queries Q
′

1 and Q
′

2 without ORDER
BY clauses are equivalent, and Q1 and Q2 sort the
query results returned by Q

′

1 and Q
′

2 according to the
equivalent ORDER BY expressions.

B. Basic Idea

Inspired by the U-expressions for modeling SQL queries,
we propose an approach to model a Cypher query as a G-
expression g(t), which takes a tuple t in the Cypher query



LIA* theory based decision by SMT

Syntax & semantic check

Cypher query normalization

G-expression construction

Cypher query: Q1, Q2

Success

Normalized Query: 𝑄1
𝑁 = 𝑄1

𝑁?

G-expression: G1=G2?

Q1=Q2?

Terminate
Fail

①

②

③

④

Fig. 3. The workflow of GraphQE.

result as input and outputs its multiplicity. Then two Cypher
queries Q1 and Q2 are considered semantically equivalent
if their corresponding G-expressions g1(t) and g2(t) always
output the same value for any tuple t on an unspecified
property graph.

To model a Cypher query based on U-semiring, we first
assign a variable ei to represent any property graph entity for
each node pattern and relationship pattern in a graph pattern
Gp = ⟨Np, Rp, ρp, ϕp⟩. We then model the Cypher query
as a G-expression based on these variables. Finally, we can
calculate the multiplicity of a tuple t in the Cypher query
result by enumerating all possible graph entities (e1, . . . , en)
over an unspecified property graph G, which satisfy graph
pattern Gp.

For example, given a simple Cypher query MATCH
(n1)-[r]->(n2) WHERE n1.age=59 RETURN n1,
we assign three variables e1, e2, e3 to node pattern (n1),
relationship pattern -[r]->, and node pattern (n2),
respectively. Then, we model the Cypher query into a
G-expression as

g(t) =
∑

e1,e2,e3

[t = e1]×Node(e1)×Rel(e2)×Node(e3)

× [in(e2) = e1]× [out(e2) = e3]× [e1.age = 59]

in which Node(e), Rel(e), in(e) and out(e) denote whether
e is a node entity, relationship entity, e’s incoming node
and outgoing node, respectively. g(t) uses the unbounded
summation (Σ) to enumerate all graph entities (e1, e2, e3) over
an unspecified property graph G and calculates the multiplicity
of tuple t in the Cypher query result using [t = e1].

Note that g(t) returns a natural number for any tuple t, and
can illustrate the bag semantics of Cypher queries. Based on
this idea, we further construct G-expressions for the predicates
and sorting of a Cypher query and a set of complex Cypher
features, e.g., the arbitrary-length paths ((n1)-[*]->(n2)).
The problem of proving Cypher query equivalence is then
transformed into that of proving the equivalence of their
corresponding G-expressions, i.e., g1(t) and g2(t).

C. Workflow of GraphQE

We propose an approach to model Cypher queries based
on our idea in Section III-B and implement it as GraphQE.
GraphQE takes a pair of Cypher queries Q1 and Q2 as input

and returns whether they are equivalent. As shown in Fig. 3,
GraphQE consists of four stages.

1⃝ Syntax & semantic check. The input Cypher queries
may contain syntax or semantic errors. Syntax errors occur
when Cypher queries violate the Cypher grammar and seman-
tic errors occur when Cypher queries use illegal operations.
To ensure the correctness of the input Cypher queries, we
perform both syntax and semantic checks, discarding any
queries that contain errors. Specifically, for a given Cypher
query, we first attempt to construct an Abstract Syntax Tree
(AST) using a Cypher grammar parser that is built on the
openCypher grammar [2]. Queries that fail to generate ASTs
are considered to violate the Cypher grammar, and the proving
process is terminated. For syntactically correct Cypher queries,
we adopt a semantic check based on their ASTs. We check the
following cases: (1) Incorrect variable reference. Undefined
variable references in WHERE clause cause semantic errors.
(2) Incorrect relationship labels. In property graphs, each
relationship can have only one label. Relationship patterns that
share the same variable but define different labels can lead to
semantic errors. Similar to syntax checking, for queries that
fail the semantic check, we terminate the proving process.

2⃝ Cypher query normalization. Since some complex
Cypher queries (e.g., those with variable-length paths) are
difficult to be directly modeled and some Cypher queries can
be isomorphic after simple query transforms, we apply a rule-
based Cypher query normalization to simplify these queries
into forms that we can support. Specifically, we define a group
of normalization rules on the Cypher ASTs to handle built-in
functions, complex features and reform the ASTs. We will
further discuss our rule-based Cypher query normalizations in
Section V.

3⃝ G-expression construction. For normalized Cypher
queries QN

1 and QN
2 , we model them as U-semiring Cypher

expressions (G-expression for short) G1 = g1(t) and G2 =
g2(t), which model the multiplicity of tuple t in their query
results. By utilizing G-expressions, we transform the prob-
lem of proving Cypher query equivalence into proving the
equivalence of g1(t) and g2(t). We will further discuss our
G-expressions in Section IV.

4⃝ Decision procedure. Once Cypher queries are modeled
into G-expressions, we prove the equivalence of G-expressions
by proving that ∃t.g1(t) ̸= g2(t) is unsatisfiable using the Z3
SMT solver [19]. Since SMT solvers cannot handle the un-
bounded summations (i.e.,

∑
) in G-expressions, we leverage

the LIA* based algorithm proposed by Ding et al. [22] to
eliminate the unbounded summations and construct first-order
logical expressions for proving their satisfiability by Z3.

IV. G-EXPRESSION

To model Cypher queries as G-expressions, we first model
the property graph model under semiring semantics (Sec-
tion IV-A). Then we model core and advanced Cypher fea-
tures, and construct G-expressions for Cypher queries (Sec-
tion IV-B). Finally, we illustrate the decision procedure of
proving the equivalence of G-expressions (Section IV-C).



A. Modeling Property Graph
Property graph entities are stored as nodes and relationships

under set semantics, so that the multiplicity of each property
graph entity is one. Therefore, we only need to distinguish
whether a property graph entity is a node or a relationship. For
an arbitrary property graph entity e in an unspecified property
graph G = ⟨N,R, ρ, λ, σ⟩, we define Node(e) and Rel(e)
functions to model nodes and relationships as follows.

Node : N ∪R → B = {1, 0}, Rel : N ∪R → B = {1, 0}

Node(e) =

{
1 if e ∈ N

0 otherwise
Rel(e) =

{
1 if e ∈ R

0 otherwise

Each relationship in a property graph connects two nodes
from its outgoing node to its incoming node. For a relationship
e in an unspecified property graph G = ⟨N,R, ρ, λ, σ⟩, we
define out(e) and in(e) functions to express a relationship e’s
outgoing and incoming nodes, respectively, as follows.

out : R → N, in : R → N

Specifically, if e1 and e2 are the outgoing and incoming nodes
of e, respectively, i.e., ρ(e) = ⟨e1, e2⟩, then

out(e) = e1, in(e) = e2

To express the multiplicity of relationships’ outgoing and
incoming nodes, we use U-semiring operator [·] on out(e)
and in(e). For example, [out(e) = e1] returns 1 if e1 is the
outgoing node of relationship e, and 0 otherwise. Note that,
out(e) and in(e) are always used together with Rel(e) to
ensure e is a complete relationship in a property graph.

Property graphs utilize labels to categorize nodes (rela-
tionships) into different node (relationship) sets. To model
labels of each property graph entity, we define a function
Lab(e, label) to represent that a property graph entity e has
a label label. Specifically, for an arbitrary graph entity e in
an unspecified property graph G = ⟨N,R, ρ, λ, σ⟩, we define
Lab(e, label) as follows.

Lab : (N ∪R)× L → B = {1, 0}
Specifically, for the labels of e, denoted as λ(e), we have

Lab(e, label) =

{
1 if label ∈ λ(e)

0 otherwise
Property graph entities have a set of properties. We model

each property of a property graph entity by defining x.key to
access the property value of a given property name key. For
example, we use e.p1 to access the value of e’s property name
p1, and [e.p1 = v1] returns 1 if v1 is the value of e.p1 and 0
otherwise.

B. Modeling Cypher Query Features
Based on the predefined functions in Section IV-A, we

model Cypher queries as U-semiring based Cypher expres-
sions (G-expression for short). Fig. 4 shows the Cypher
fragments we support currently. We first model core features
of Cypher queries, e.g., graph patterns, predicates and query
results. We then model a set of advanced Cypher features, e.g.,
join of graph patterns.

q ∈ Query :: = m r | q1 UNION q2 | q1 UNION ALL q2

m ∈ Match :: = MATCH p1, . . . , pn

| OPTIONAL MATCH p1, . . . , pn

| m WHERE b | m WITH b1, . . . bn

r ∈ Return :: = b | DISTINCT r | r ORDER BY b

| r LIMIT b | r SKIP b

p ∈ GraphPattern :: = n | n c

n ∈ Node :: = (v : l1 : ... : ln {a1...an})
v ∈ Variable :: = string

l ∈ Label :: = string
a ∈ Property :: = string

c ∈ Relationship :: = p-[v : l1 : ... : ln {a1...an} ∗ i1...i2]->n
| p<-[v : l1 : ... : ln {a1...an} ∗ i1...i2]-n
| p-[v : l1 : ... : ln {a1...an} ∗ i1...i2]-n

i ∈ Constant :: = integer
b ∈ Expression :: = b1 = b2 | b1 ̸= b2

| NOT b | b IS NULL | + b | − b | (b)
| b1 AND b2 | b1 OR b2

| b1 > b2 | b1 < b2 | b1 ≥ b2 | b1 ≤ b2

| TRUE | FALSE | EXISTS q

| v | v.a | f(b) | agg(b)
| ∗ | b AS s | p1, p2 | i | UNWIND b

agg :: = COLLECT | COUNT | SUM | MAX | MIN | AVG
s ∈ Alias :: = string
f ∈ UDF :: = string

Fig. 4. Cypher fragments supported by GraphQE.

1) Modeling the Core Features of Cypher Queries: Cypher
provides several core features to form a basic query for graph
pattern matching, including graph patterns, predicates, and
query results, as shwon in Fig. 2.

Modeling Cypher graph patterns. Cypher graph patterns
include node and relationship patterns. We model each node or
relationship pattern as an algebraic expression, which outputs
1, if an arbitrary graph entity e satisfies this pattern; otherwise
outputs 0.

A complete node pattern in a Cypher query consists of a
variable that refers to this node pattern, labels and properties
with their values. To model a node pattern, we assign an
arbitrary graph entity e to it and construct an algebraic
expression using predefined functions. Specifically, we use
Node(e) to represent that property graph element e has the
type of node, use Lab(e, label) to represent e has label
label, and use [e.key = value] to represent the value of its
property key is value. Furthermore, we use AND (i.e., ×)
operations to join multiple labels and multiple properties. For
example, a node pattern (n:l1:l2{p1:v1}) is assigned
a variable n, and has two labels l1 and l2 and a property
p1 with its value v1. We can model this node pattern as
Node(e) × Lab(e, l1) × Lab(e, l2) × [e.p1 = v1]. Note that
the variable (e.g., n), the labels (e.g., :l1:l2), and the
properties (e.g., {p1:v1}) can be omitted in a node pattern.
For example, () is the simplest node pattern, and we only use
Node(e) to model it.

A complete relationship pattern in a Cypher query consists



of a variable that refers to this relationship pattern, labels and
properties with their values, and its outgoing and incoming
node patterns. To model a relationship pattern, we assign
an arbitrary graph entity e to it and construct an algebraic
expression using predefined functions. Specifically, we use
Rel(e) to represent that property graph pattern e has the
type of relationship, use Lab(e, label) to represent e has
label label, use [e.key = value] to represent the value
of its property key is value, and use [out(e) = e1] and
[in(e) = e2] to represent e’s outgoing node pattern is e1
and incoming node pattern is e2, respectively. For multiple
properties, we use AND (i.e., ×) operations to join them.
However, different from node patterns, for multiple labels in
a relationship pattern, we use OR (i.e., +) operations instead
of AND (i.e., ×) operations to connect them, because a rela-
tionship can have only one label. For example, a relationship
pattern (n1)-[r:l1|l2{p1:v1}]->(n2) is assigned a
variable r, has two labels l1 and l2, a property p1 with its
value v1, and its outgoing and incoming node patterns are
assigned variables n1 and n2, respectively. We can model this
relationship pattern as Rel(r) × [out(r) = n2] × [in(r) =
n1]× (Lab(r, l1) + Lab(r, l2))× [r.p1 = v1].

Cypher adopts relationship-injective semantics for the re-
lationship patterns that require relationship patterns with
different variables to match different relationships in the
property graph. To model it, we construct not equal predi-
cates to each pair of relationships defined within the same
MATCH clause. For example, for a graph pattern MATCH
()-[r1]->()-[r2]->(), we first assign e1 and e2 to
relationship pattern ()-[r1]->() and ()-[r2]->(), re-
spectively. Then we construct expression not([e1 = e2]) for re-
stricting that the two relationship patterns must match the dif-
ferent relationships. Note that relationships defined in different
MATCH clauses are not restricted by relationship-injective se-
mantics, e.g., r1 and r2 in MATCH ()-[r1]->() MATCH
()-[r2]->().

Modeling predicates. Predicates define filtering conditions
in a Cypher query. We leverage the semiring operator [·] to
model predicates. For example, we model the predicate in
Fig. 2 using [e.age = 59], which returns 1 if the property age
of entity e is 59, and 0 otherwise. Multiple predicates are con-
nected by × for AND operations and + for OR operations. For
example, we model WHERE p1.age>29 OR p1.age<59
under semiring semantics as ∥[e1.age > 29]+[e1.age < 59]∥.

Modeling query results. Cypher queries return tabular
results that consist of a set of tuples, each of which has a
set of column values. We model each tuple in the result table
using t.coli and construct the projections from graph entities
to the value of t.coli. For example, in Fig. 2, the tuple in the
query result has one column, which projects an arbitrary graph
entity e1 for node pattern p1 to the value of its property name.
Thus, we model this query result using [t.col1 = e1.name].

2) Modeling the Advanced Cypher Features: Cypher is
highly expressive and provides a set of advanced features or
clauses to enrich its expressiveness. As shown in Table I, we
model a set of advanced Cypher features and construct G-

expressions for them.
Intermediate results. The WITH clause creates interme-

diate results in a query. It generates an intermediate table
as the input of the subsequent clause. For each intermediate
table, we introduce an intermediate variable t′i to model the
multiplicity of tuples in the table in the same way as RETURN.
For Cypher queries with the structure: MATCH p1 WITH
i1, i2... MATCH p2 RETURN e1, e2..., we model it as g(t) =∑

t′,e⃗1
(E2×[t.col1 = e1]×...×

∑
e⃗2
(E1×[t′.col1 = i1]×...)),

where E1 represents the G-expression for p1, E2 represents the
G-expression for p2, and t′ is the intermediate variable. Fur-
thermore, temporary variables are also used to model Cypher
nested subqueries, such as MATCH (n) WHERE EXISTS
MATCH (n1) WHERE n1.p1 > 100 RETURN n.

However, temporary variables may lead to semantic loss.
For example, for the Cypher query MATCH (p) WITH
DISTINCT p.name AS name RETURN name, we con-
struct the following G-expressions for it.

g(t) =
∑
t′

[t = t′]× ∥
∑
e1

Node(e1)× [t′ = e1.name]∥

The G-expressions cannot be correctly solved by SMT solvers
since t′ lost the uniqueness of the query results created
by WITH DISTINCT p.name. Therefore, we propose a
normalization rule to eliminate temporary variables. Specif-
ically, we remove temporary variable t′ from the unbounded
summation if it can be represented by other variables using
[t′ = t1]. After normalization, Q’s G-expression becomes

g(t) = ∥
∑
e1

Node(e1)× Lab(e1, P erson)× [t = e1.name]∥

Intermediate variables can cause predicates to deviate from
their intended scopes, e.g., the [e1.dept = e2.dept] in

g(t) =
∑
e1

[t = e1]×Node(e1)× [e1.dept = e2.dept]× ∥
∑
e2

Node(e2)∥

To address this, we propose a normalization rule that moves
the predicate to the correct summation body as follows.

g(t) =
∑
e1

[t = e1]×Node(e1)× ∥
∑
e2

Node(e2)× [e1.dept = e2.dept]∥

Aggregate. GraphQE models aggregates using inter-
mediate variables. For example, for aggregate SUM in
the Cypher query segment MATCH (n:Person) RETURN
SUM(n.age), GraphQE creates variable t′ and model it as

g(t) = [t =
∑
t′

[t′ = e1.name]×Node(e1)× Lab(e1, P erson)× e1.sal]

GraphQE does not model the concrete semantics of
COLLECT but represents it using an uninterpreted function
in the SMT solver.

Unwinding. The UNWIND clause transforms a list into
individual rows. The list for unwinding can be a constant list
created by WITH or collected from COLLECT. As shown in
Table I, we model unwinding on a constant list by modeling
the concatenation of each element in it using +. Unwinding a
collected list will break it into individual rows and remove the
aggregates, e.g., UNWIND(COLLECT(n.name)) is directly
modeled into n.name.



TABLE I
MODELING ADVANCED CYPHER FEATURES BY G-expressionS.

Cypher feature Query example G-expression

Intermediate results MATCH (n) WITH n.name AS name
RETURN name

∑′
t([t = t′]×

∑
t′ ([t

′ = e.name]×Node(e)))

Aggregate MATCH (n:Person) RETURN SUM(n.age)
g(t) = [t =

∑
t′ [t

′ = e1.name]×Node(e1)× Lab(e1, P erson)
×e1.sal

Unwinding WITH [{c1:0, c2:1},{c1:2, c2:3}]
AS tmp UNWIND tmp AS tmpRow

([tmpRow.c1 = 0]× [tmpRow.c2 = 1])
+([tmpRow.c1 = 2]× [tmpRow.c2 = 3])

Arbitrary-length path ()-[*]->() Rel(e)× UNBOUNDED(e)× [out(e) = e1]× [in(e) = e2]

Sorting with truncation WITH x.name ORDER BY x.age
RETURN 1

[t = e.name]× [asc(t) = e.age]× [limit(t) = 1]

Natural join MATCH...(q1) MATCH...(q2) G(q1)×G(q2)
Left outer join MATCH... (q1) OPTIONAL MATCH... (q2) G(q1)×G(q2) +G(q1)× not(G(q2))× isNULL(G(q2))
Union all MATCH... (q1) UNION ALL MATCH... (q2) G(q1) +G(q2)
Union MATCH... (q1) UNION MATCH... (q2) ∥G(q1) +G(q2)∥

Arbitrary-length path. Cypher uses (n1)-[*]->(n2)
to retrieve all paths of any length between two nodes n1 and
n2. In this case, n1 and n2 are fixed and the relationships in
the paths must satisfy the same predicate. Therefore, we treat
arbitrary-length path patterns (i.e., ()-[*]->()) as a special
kind of relationship pattern, and assign a relationship variable
e to this pattern, in which e1 and e2 represent its outgoing and
incoming node patterns, respectively. Then, we define a func-
tion UNBOUNDED(e) on e that outputs 1 if e is a com-
bination of any number of relationships. Finally, we construct
G-expression term Rel(e)×UNBOUNDED(e)× [out(e) =
e1]× [in(e) = e2] to model this pattern. Besides, labels speci-
fied on the arbitrary-length path can also be supported through
this approach. For example, we model -[*:KNOWS]-> as
UNBOUNDED(e)× Lab(e,KNOWS).

Sorting with truncation. Cypher sorts and truncates the
query results using the ORDER BY...LIMIT...SKIP...
fragments. To model ORDER BY o1, ..., on, we follow an idea
that a condition on the query result can be represented as
the same condition on all the tuples within the query result.
Therefore, we treat the o1, ..., on as conditions on all the
tuples in the query result. We define function order(t, i) on
an arbitrary tuple t in the query result to represent oi. Then,
we construct [order(t, i) = oi] to model the value of oi.
Finally, we use × to connect all the [order(t, i) = oi], i.e.,
[order(t, 1) = o1]×· · ·×[order(t, n) = on]. To model LIMIT
l and SKIP s, we also treat them as conditions on all the
tuples in the query result. We define functions limit(t) and
skip(t) that represent the limiting and skipping condition on
all the tuple t in the Cypher query result. Then, we model
LIMIT l and SKIP s as [limit(t) = l] and [skip(t) = s].

For the ORDER BY...LIMIT...SKIP... fragments
among Cypher subqueries, we consider the following cases:
(1) single ORDER BY is ignored since the order it specifies
will not be guaranteed by the following clauses. (2) For
ORDER BY followed by LIMIT and SKIP, we cannot directly
model it into a single G-expression. Instead, we design a
divide-and-conquer based approach that individually check
the equivalence of their subqueries. For example, for the
equivalent Cypher queries in Listing 2, we divide each query
into subqueries, i.e., Q1 into Q1′ and Q1′′, Q2 into Q2′

and Q2′′. Then we check the equivalence of each pair of

subqueries, i.e., ⟨Q1′, Q2′⟩, and ⟨Q1′′, Q2′′⟩.
1 Q1: MATCH (n1) WITH n1 ORDER BY n1.p1 LIMIT 1
2 MATCH (n1)-[]->(n2) RETURN n2
3 Q1’: MATCH (n1) WITH n1 ORDER BY n1.p1 LIMIT 1
4 Q1’’: MATCH (n1) MATCH (n1)-[]->(n2) RETURN n2
5
6 Q2: MATCH (n1) WITH n1 ORDER BY n1.p1 LIMIT 1
7 MATCH (n2)<-[]-(n1) RETURN n2
8 Q2’: MATCH (n1) WITH n1 ORDER BY n1.p1 LIMIT 1
9 Q2’’: MATCH (n1) MATCH (n2)<-[]-(n1) RETURN n2

Listing 2. Equivalent Cypher queries with ORDER BY...LIMIT...
within their subqueries.

Product/Concatenation. Cypher graph patterns defined in
multiple MATCH are joined through Cartesian product, and
we recursively construct G-expressions (denoted as G(si) in
Table I) for each MATCH and connect them using ×. Cypher
graph patterns are left outer joined by OPTIONAL MATCH,
and we model the graph patterns that can be NULL using
uninterpreted function isNULL in the SMT solver. In the
similar way, we use + for the concatenation of recursively
constructed G-expressions of Cypher subqueries in UNION
ALL and use an extra || · || for UNION.

C. Proving the Equivalence of G-expression

By constructing G-expressions for Cypher queries, we trans-
form the problem of proving the equivalence of Cypher queries
into proving the equivalence of G-expressions. We first map
the returned elements across the two Cypher queries. This
process prevents query inequality caused by difference in the
order of returned elements. For example, consider two Cypher
queries as follows.
Q1: MATCH (n1)-[r]->(n2) RETURN n1, n2
Q2: MATCH (n1)<-[r]-(n2) RETURN n1, n2
In Q1, the returned element n1 should be mapped to the
returned element n2 in Q2, and should not be affected by
their orders. To achieve this, we pair the returned elements
in both queries according to their types. Specifically, node or
relationship variables are mapped to those of the same type,
expressions are mapped to expressions of the same type, and
references to variable properties are mapped to references with
the same name for variables of the same type. If no successful
mappings are found, we will remove these conditions and
map again. If the numbers of elements returned by the two



Cypher queries are inconsistent, then the two queries can only
be equivalent if they both return empty results on any property
graph. Therefore, we directly prove whether the two queries
satisfy this case.

To prove the equivalence of G-expression g1(t) and g2(t),
we prove that ∃t.g1(t) ̸= g2(t) is unsatisfiable through Z3
SMT solver. Since SMT solvers cannot handle unbounded
summations, we leverage LIA* theory based algorithm [22],
[37] to eliminate unbounded summations. LIA* formula ex-
tends Linear Integer Arithmetic to represent unbounded sum-
mations, allowing for reasoning unbounded summations using
SMT solvers. The algorithm replaces each unbounded sum-
mations with an integer value vi and finds an equisatisfiable
formula to represent the unbounded summations.

For example, given two G-expressions

g1(t) =
∑
e1

[t = e1.name]×Node(e1)× ([e1.age < 10]

+ [e1.age > 20])

g2(t) =
∑
e1

[t = e1.name]×Node(e1)× [e1.age < 10]

+
∑
e2

[t = e2.name]×Node(e2)× [e2.age > 20]

the algorithm replaces the unbounded summations in g1(t) and
g2(t) and models them as v1 and v2 + v3. It finds an equisat-
isfiable formula of ∃v1, v2, v3.v1 ̸= v2 + v3 ∧ (v1, v2, v3) =
λ1(1, 0, 1)+λ2(0, 1, 0), which can be proved unsatisfiable by
SMT solvers since such λ1 and λ2 do not exist.

V. RULE-BASED CYPHER QUERY NORMALIZATION

Cypher provides some complex features that cannot be
directly modeled by the approach in Section IV (e.g., variable-
length paths (()-[*1..2]->()) and RETURN *. However,
we observe that these features can be represented by the com-
binations of features in Section IV. Therefore, we propose a
group of normalization rules that transform queries containing
these complex features into equivalent queries using only the
features we have modeled. Specifically, each normalization
rule traverses the Cypher AST, matches specific query frag-
ments, and transforms them into simplified equivalent Cypher
fragments.

Table II shows the normalization rules to transform com-
plex features. Rule 1⃝ transforms an undirected relationship
in a Cypher query to the union of relationships with both
directions. This is because Cypher does not support querying
undirected edges. Instead, undirected edges are parsed as
two directed edges in opposite directions. Rule 2⃝ transforms
variable-length paths into the union of all the lengths. Rule
3⃝ to 5⃝ aims to fill the omitted but determined parts of a

Cypher query, e.g., RETURN *. Rule 6⃝ converts primary key
equivalences into variable equivalences based on the integrity
constraints of the graph database.

We normalize a Cypher query by sequentially applying these
normalization rules round by round until no rule is successfully
applied. Only one rule is applied per round to avoid conflicts.
Specifically, 5⃝ is applied after 2⃝, 3⃝ and 4⃝, since 2⃝ and
4⃝ can create anonymous node or relationship patterns and

copy the existing patterns that should be standardized by 5⃝.
Since 5⃝ assign variables to anonymous graph patterns, it is
applied after 3⃝. We apply 6⃝ after 5⃝, because we should not
replace the variable names of node or relationship patterns
across subqueries since they are indeed different.

VI. SOUNDNESS AND COMPLETENESS

Soundness. We now show that GraphQE, our approach for
checking the equivalence of Cypher queries, is sound.

Theorem 1. Let Q be a simple Cypher query, which is
defined by the Cypher fragments shown in Fig. 4, excluding
arbitrary-length path, built-in functions, ORDER BY, LIMIT,
and SKIP. Let g(t) be the G-expression representation of Q.
Then, for any tuple t, g(t) returns the multiplicity of t in the
evaluation of Q over a property graph G under Cypher bag
semantics.

Proof sketch. According to Definition 2, Cypher queries
adopt graph pattern matching that finds all maps from each
node/relationship pattern (Np ∪ Rp in Gp) to structure-
preserving node/relationship in a property graph (N ∪ R
in G) and satisfy condition ϕp. G-expression g(t) uses al-
gebraic functions and semiring operations to translate each
Cypher feature in Q into natural number semiring seman-
tics, which computes the multiplicity of each tuple t by
counting all the combinations of property graph elements
matched in G. For example, given a simple Cypher query Q:
MATCH (n1)-[r]->(n2) RETURN n1, GraphQE maps
the graph pattern in Q into the product of algebraic functions
as Node(n1) × Rel(r) × Node(n2) × [in(r) = n1] ×
[out(r) = n2] on semiring semantics that is structure preserv-
ing. Then, GraphQE maps the graph pattern matching in Q
into

∑
n1,r,n2 that enumerates all the combinations of property

graph elements and calculates the multiplicity of tuple t in
Q’s query result using [t = n1]. Other simple Cypher features
are modeled in the similar way. Therefore, g(t) returns the
multiplicity of any tuple t in Q’s query result. □

Theorem 2. Given two Cypher queries Q1 and Q2 and
their corresponding translated G-expressions g1(t) and g2(t), if
g1(t) and g2(t) are equivalent, then Q1 and Q2 are equivalent.

Proof sketch. We prove this theorem by examining three
different cases.

1) Q1 and Q2 do not contain arbitrary-length paths, built-in
functions, sorting and truncation. According to Theorem
1, g1(t) and g2(t) return the multiplicities of arbitrary
tuple t in their query results. If the SMT solver proves
∃t.g1(t) ̸= g2(t) is unsatisfiable, then for an arbitrary tuple
t, the multiplicities of t in the query results of Q1 and Q2

are the same. Thus, Q1 and Q2 are equivalent.
2) Q1 and Q2 contain arbitrary-length paths, built-in func-

tions, sorting and truncation outside subqueries. GraphQE
models these features as uninterpreted functions in g1(t)
and g2(t). The equivalence of g1(t) and g2(t) implies that
Q1 and Q2 use these features in the same way. This implies
that the equivalence of g1(t) and g2(t) is the sufficient
condition for the equivalence of Q1 and Q2.



TABLE II
NORMALIZATION RULES USED FOR DE-SUGARING COMPLEX CYPHER QUERIES.

No. Normalization rule Original query Normalized query

1⃝ Eliminating undirected rela-
tionship pattern MATCH (n1)-[]-(n2) RETURN n1.name

MATCH (n1)-[]->(n2) RETURN n1.name
UNION ALL
MATCH (n1)<-[]-(n2) RETURN n1.name

2⃝ Rewriting variable-length path MATCH (n1)-[*1..2]->(n2) RETURN n1
MATCH (n1)-[]->(n2) RETURN n1
UNION ALL
MATCH (n1)-[]->()-[]->(n2)
RETURN n1

3⃝ Rewriting RETURN * MATCH (x)-[z]->()-[y]->() RETURN *
MATCH (x)-[z]->()-[y]->() RETURN
x, y, z

4⃝ Eliminating redundant clause MATCH (x) WITH x.name AS name
RETURN name

MATCH (x) RETURN x.name

5⃝ Standardizing variable MATCH (person)-[]->(book) RETURN
person

MATCH (n1)-[r1]->(n2) RETURN n2

6⃝ ID equality simplification MATCH (n1), (n2) WHERE
id(n1)=id(n2) RETURN n2

MATCH (n1) RETURN n1

3) Q1 and Q2 contain sorting and truncation within sub-
queries. GraphQE divides Q1 and Q2 into subqueries
Q1

1 . . . Q
m
1 and Q1

2 . . . Q
n
2 . Then, GraphQE requires m =

n and individually proves each Qi
1 and Qi

2 are equivalent,
which forms a sufficient condition for the equivalence of
Q1 and Q2. □

Completeness. GraphQE does not ensure completeness.
That said, even if two Cypher queries are equivalent, we
cannot ensure their corresponding translated g1(t) and g2(t)
are equivalent. The incompleteness of GraphQE is caused
by the following reasons. (1) GraphQE does not model
all Cypher features, e.g., regular functions and CALL. (2)
GraphQE does not support handling all cases for ORDER
BY...LIMIT...SKIP... fragments in subqueries. Our
divide-and-conquer based approach forms a sufficient but
not necessary condition proving the equivalence of Cypher
queries. (3) GraphQE utilizes uninterpreted functions to
model arbitrary-length paths and built-in functions, which only
form a sufficient but not necessary condition for proving the
equivalence of Cypher queries. (4) GraphQE relies on the
algorithm proposed by Ding et al [22] to prove the equivalence
of G-expressions that is also incomplete.

VII. EVALUATION

We implement GraphQE with around 5000 lines of Java
code. We use Antlr4 [40] to parse Cypher queries into Cypher
Abstract Syntax Trees (ASTs) according to the grammar from
openCypher [2]. We then transform the ASTs into graph
relational algebra [30], [38]. We construct a G-expression for
each Cypher query based on its graph relational algebra. The
decision procedure is implemented based on the LIA* con-
struction algorithm in SQLSolver [22] and utilizes Microsoft
Z3 [19] to verify the equivalence of G-expressions.

To demonstrate the effectiveness of GraphQE, we address
the following two research questions:
• RQ1: How effective is GraphQE’s proving capability?
• RQ2: How is the performance of GraphQE on proving

Cypher query equivalence?
To answer RQ1, we construct a dataset of 148 equivalent

Cypher query pairs as CyEqSet and test the verification

capability of GraphQE on it. To the best of our knowledge,
GraphQE is the first equivalence prover for Cypher queries.
Therefore, we cannot compare GraphQE with other provers.
However, we analyze the verification result of GraphQE on
all the Cypher features in CyEqSet.

To answer RQ2, we calculate the verification latency of
GraphQE on each test case in CyEqSet and analyze why
certain cases can have an extremely low or high latency.

A. Dataset Construction

Currently, there are no open-source datasets of equiva-
lent Cypher queries available for evaluating our approach.
Therefore, we construct a dataset, CyEqSet, of equivalent
Cypher queries to evaluate GraphQE. Specifically, we con-
struct CyEqSet through two approaches: (1) translating the
open-source equivalent SQL query pairs from Calcite [4] into
equivalent Cypher query pairs and (2) constructing equivalent
Cypher query pairs by rewriting Cypher queries using existing
equivalent rewriting rules.

Translation of SQL Calcite dataset. Calcite dataset [4]
that contains 232 pairs of equivalent SQL queries is widely
applied for evaluating SQL query equivalence [16], [17],
[22], [49], [54], [55]. Researchers have proposed SQL-to-
Cypher translating tools, e.g., the openCypherTranspiler [10].
However, these tools only support limited Cypher features,
resulting in poor effectiveness when translating the Calcite
dataset. Therefore, we manually translate each SQL query
pair in Calcite dataset into a Cypher query pair and check
the equivalence of the obtained Cypher query pairs based on
the principles of Cytosm [45].

However, since the syntax of Cypher is significantly differ-
ent from SQL, the following cases cannot be translated from
SQL queries to Cypher queries. (1) We discard SQL queries
having sorting operations inside and outside subclauses, since
Cypher does not guarantee that the sorting of subqueries will
be preserved. (2) We discard SQL queries adopting operations
on the results of UNION or UNION ALL, which is not
supported by Cypher. (3) We discard SQL queries containing
GROUP BY that cannot be represented as DISTINCT in



TABLE III
PROVED QUERY PAIRS BY GRAPHQE.

Project Query pairs Proved
Calcite-Cypher 80 73
LDBC 13 13
Cypher-for-gremlin 23 23
Graphdb-benchmarks 32 29
Total 148 138

Cypher. Finally, we obtain 77 equivalent Cypher query pairs
from Calcite in total.

Equivalent query transformation through rewriting
rules. Since SQL queries do not have some specific Cypher
features, e.g., arbitrary-length paths, the collected dataset via
translating SQL queries cannot cover these Cypher features.
Therefore, to enrich and expand our dataset, we first col-
lect real-world Cypher queries from open-source projects,
i.e., LDBC-snb-interactive-v1-impls [24] (a GDB benchmark),
Cypher-for-gremlin [8] (a Cypher query plugin), and Graphdb-
benchmarks [13] (a GDB benchmark), and we obtain 36
Cypher queries. Then, we apply three exiting Cypher rewriting
rules on these Cypher queries as follows. (1) Renaming vari-
ables, which renames the variable names of node and relation-
ship patterns. (2) Reversing path direction, which reverses
the relationship patterns without changing their incoming and
outgoing node patterns. (3) Splitting graph pattern, which
splits multiple relationship patterns in a Cypher graph pattern.

We construct equivalent Cypher query pairs by applying
these rules on each real-world Cypher queries. Note that some
Cypher queries can be successfully rewrited by more than one
rewriting rule, resulting in multiple equivalent Cypher query
pairs. Finally, we generated 68 equivalent Cypher query pairs.

In total, we construct CyEqSet with 148 equivalent
Cypher query pairs from the above two approaches. CyEqSet
is representative since it covers various of Cypher query
fragments: MATCH, OPTIONAL MATCH, RETURN, WHERE,
WITH, UNION, UNION ALL, UNWIND, LIMIT, SKIP,
ORDER BY, ASC, DESC, and aggregate functions (SUM,
COUNT, AVG, DISTINCT, MIN, MAX, COLLECT). CyEqSet
also covers advanced or complex Cypher features, including
all the features in Table I along with special value (e.g., null,
false) and queries that always return empty results.

To test the effectiveness of GraphQE on proving non-
equivalent Cypher queries, we construct a dataset CyNeqSet
containing 148 non-equivalent Cypher query pairs. Specif-
ically, we mutate the equivalent Cypher query pairs in
CyEqSet by randomly applying one of the following mu-
tation rules: 1) changing the direction of a path, 2) changing
the property values or labels of some variables, 3) changing
UNION ALL to UNION or vice versa, 4) changing the value of
LIMIT or ORDER BY and 5) removing or adding DISTINCT.
We further manually confirmed that each pair of Cypher
queries in CyEqSet is not equivalent.

B. Verification Result

Table III shows the evaluation result of GraphQE on
CyEqSet. Specifically, out of 148 pairs of equivalent Cypher

Fig. 5. The proving latency of GraphQE.

queries in CyEqSet, GraphQE can successfully prove the
equivalence of 138 query pairs. On the dataset translated
from Calcite, we proved 73 out of 80 (89%) equivalent
Cypher query pairs. On the dataset constructed from real-
world projects, we proved 65 out of 68 (approximately 96%)
equivalent Cypher query pairs. We further analyze the failed
cases and identify the reasons for these failed cases.

• Sorting and truncation. GraphQE cannot prove equiva-
lent queries that contain inconsistent numbers of ORDER
BY...LIMIT...SKIP... fragments within subqueries
due to the limitation of our divide-and-conquer proving
approach in Section IV-B. 2 cases failed due to this reason.

• Aggregate. GraphQE cannot eliminate the intermediate
variables in nested aggregates and aggregate computations,
e.g., COUNT(SUM(n)) and SUM(n)/COUNT(n). 4 cases
failed due to this reason.

• Uninterpreted function. GraphQE utilizes uninterpreted
functions to model COLLECT aggregate and built-in func-
tions, which cannot express their concrete semantics. 4
cases failed due to this reason.

GraphQE has successfully proved 138 out of 148 pairs of
equivalent Cypher queries, demonstrating its effectiveness.

We evaluate GraphQE on CyNeqSet, and check whether
GraphQE can prove the non-equivalence of these pairs in
CyNeqSet. The experimental results show that GraphQE
proves all test cases in CyNeqSet to be non-equivalent.

C. Performance

To evaluate the performance of GraphQE, we conduct tests
about GraphQE’s proving latency on a platform equipped
with an Intel Core i5-11300 processor and 16GB of RAM.

The average latency for proving Cypher query equivalence
across all test cases in CyEqSet is 38ms. Fig. 5 shows
the distribution of proving latency for GraphQE. 90% of
the test cases are proved by GraphQE in less than 100ms.
Notably, 75 out of 148 Cypher query pairs are verified with
an exceptionally low latency of 10ms. Only 2 Cypher query
pairs require over 500ms latency for proving.

The Cypher query pair with the highest proving latency is
due to the ORDER BY...LIMIT... fragments within sub-
queries. We use the divide-and-conquer based approach that
proves their equivalence by dividing the Cypher queries into
subqueries by ORDER BY...LIMIT... fragments. Each



subquery is then individually proved for equivalence, leading
to significantly higher proving latency than other cases.

GraphQE can efficiently prove the equivalence of Cypher
queries with a latency of 38ms on average.

VIII. DISCUSSION

In this section, we first discuss the limitations of GraphQE.
Then, we discuss how to extend GraphQE for supporting
other graph query languages, e.g., GQL [21], [32], Gremlin
[7] and SPARQL [41].

A. Limitations

Although GraphQE is effective in proving the equivalence
of Cypher queries, GraphQE is unable to adequately support
some Cypher features, which necessitate the development of
new approaches in the future.
• GraphQE cannot prove the equivalence of Cypher queries

containing nested aggregates and aggregation computations,
e.g., SUM(SUM(n)) and SUM(n)/COUNT(n), because
their corresponding G-expressions contain intermediate
variables that cannot be eliminated through our approach.

• GraphQE cannot prove the equivalence of Cypher
queries containing different number of ORDER
BY...LIMIT...SKIP... fragments, because our
divide-and-conquer proving process requires that two
equivalent Cypher queries have the same number of
ORDER BY...LIMIT...SKIP... fragments.

• GraphQE cannot model the concrete semantics of built-in
functions and user-defined functions, and cannot support
some Cypher features, e.g., YIELD in CALL.

B. Extending GraphQE to other Graph Query Languages

Although GraphQE is designed for Cypher queries, it can
be extended to other graph query languages, e.g., GQL [21],
[32], Gremlin [7] and SPARQL [41]. Next, we introduce how
to extend GraphQE to support these graph query languages.

Supporting GQL. GQL is a new standard graph query
language that extends Cypher and is fully compatible with
Cypher. We can easily extend GraphQE to support GQL from
the following aspects. First, GraphQE needs to support the
property graph model adopted by GQL. GraphQE needs to re-
move its relationship-injective semantics when constructing G-
expressions for GQL. GraphQE needs to allow a relationship
to be specified with more than one label. Second, GraphQE
can support undirected relationships using uninterpreted func-
tion. Third, GraphQE needs to model the new introduced
features in GQL, e.g., EXCEPT, FILTER and FOR.

Supporting Gremlin. Gremlin is designed as a functional
query language on property graphs. For example, the Grem-
lin query g.V ().hasLabel(“person”).has(“name”, “Alice”)
.out(“knows”).values(“name”) finds all people that Alice
knows. The semantic difference between Gremlin and Cypher
is minimal. Gremlin does not use relationship-injective seman-
tics and allows a relationship to have more than one label.
GraphQE needs to remove its relationship-injective semantics

while constructing G-expressions and allows a relationship to
be specified with more than one label. Then, GraphQE needs
to model the Gremlin fragments as G-expressions.

Supporting SPARQL. SPARQL is a graph query lan-
guage designed for RDF graphs [51]. SPARQL defines graph
patterns as triples ⟨Subject, Predicate,Object⟩ that match
paths from Subject to Object through Predicate. We can
model SPARQL queries on an RDF graph in the same way of
modeling Cypher queries, since an RDF graph can be treated
as a special kind of property graphs [11]. GraphQE needs to
fix the gap between the RDF graph model and property graph
model, and build G-expressions for SPARQL fragments.

IX. RELATED WORK

SQL query equivalence provers. Researchers have pro-
posed syntax-based [16], [17], [54], [55] and semantics-
based [22], [48], [49] SQL equivalence provers. Syntax-
based approaches prove the equivalence of SQL queries by
checking the isomorphism of SQL algebraic representations.
For example, SPES [55] proposes tree-based SQL algebraic
representations to model SQL relaional algebras, and adopts
Z3 SMT solver to prove their equivalence. However, these
approaches cannot handle equivalent SQL queries that have
significantly different syntactic structures. Semantics-based
approaches model SQL queries using semiring expressions,
and transform them into first-order logic expressions that can
be verified by SMT solvers. However, these approaches cannot
be directly used to prove Cypher query equivalence.

Equivalent graph queries and their applications. Equiv-
alent rewriting of graph queries is essential in both bug
detection of GDBs [33], [34], [56] and query optimization
[15], [30]. Kamm et al. [34] test Gremlin-supported GDBs
via constructing equivalent Gremlin queries as test oracles
through equivalent query rewriting. Jiang et al. [33] use
equivalent rewriting to test Cypher-supported GDBs. However,
these rewriting rules are manually defined. Our work aims to
propose an automated graph query equivalence prover.

X. CONCLUSION

Query equivalence proving is a fundamental problem in
database research. However, we still lack a graph query equiv-
alence prover for the emerging graph databases. In this paper,
we propose GraphQE, the first Cypher query equivalence
prover, to determine whether two Cypher queries are semanti-
cally equivalent. We model Cypher queries as G-expressions,
and then prove their equivalence by using constraint solvers.
We further construct a dataset that contains 148 pairs of
equivalent Cypher queries. We evaluate GraphQE on this
dataset, and GraphQE has proved 138 pairs of equivalent
Cypher queries, demonstrating the effectiveness of GraphQE.
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